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OPERATIONS ON ELLIPTIC DIVISIBILITY SEQUENCES

Osman Bİzİm and Betül Gezer

Abstract. In this paper we consider the element-wise (Hadamard) prod-

uct (or sum) of elliptic divisibility sequences and study the periodic struc-
ture of these sequences. We obtain that the element-wise product (or

sum) of elliptic divisibility sequences are periodic modulo a prime p like

linear recurrence sequences. Then we study periodicity properties of prod-
uct sequences. We generalize our results to the case of modulo pl for some

prime p > 3 and positive integer l. Finally we consider the p-adic behavior

of product sequences and give a generalization of [9, Theorem 4].

1. Introduction

Linear recurrence sequences have played crucial roles in number theory for
many years. These sequences also appear in other mathematical disciplines and
fields including cryptography, coding theory, approximation theory, and several
branches of electrical engineering. But there are also recurrence sequences
satisfying a nonlinear recurrence relation which arise as values of the division
polynomials of an elliptic curve. Elliptic divisibility sequences (EDSs) were first
introduced by M. Ward [14] and these are integer sequences (sn) satisfying a
nonlinear recurrence relation of the form

(1.1) sm+nsm−n = sm+1sm−1s
2
n − sn+1sn−1s

2
m

and divisibility property

sn|sm whenever n|m
for all m ≥ n ≥ 1. A solution of (1.1) is called proper if s0 = 0, s1 = 1 and
s2s3 6= 0. A proper solution will be an EDS if and only if s2, s3, s4 are integers
with s2|s4. It is also easy to prove that s−n = −sn for all n ∈ N.

Elliptic divisibility sequences are quite interesting because of the close re-
lation with elliptic curves. These sequences are useful for solving the elliptic
curve discrete logarithm problem in cryptography, at least in special cases; see
[4], [7].
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Elliptic divisibility sequences are generalizations of a class of linear recur-
rence sequences. Furthermore, a great many questions about linear recurrence
sequences — for instance, prime factorization of their terms, appearance of
prime terms, primitive divisors, and powers — have been asked for elliptic
divisibility sequences. For more details, about elliptic divisibility sequences,
see [3], [4], [8], [13], [14]. Various authors have also considered the behavior
of linear recurrence sequences under the element-wise product (Hadamard) or
sum of linear recurrence sequences [2], [5], [15], see also [4], [6]. In this work, in
analogy with the element-wise product or sum of linear recurrence sequences
we consider similar problems for elliptic divisibility sequences.

Both linear sequences and elliptic divisibility sequences belong to a larger
class of sequences called bilinear sequences; see [4] for more details. It is well
known that every linear sequence of order k is also a bilinear sequence of order k.
Let (sn) and (tn) be bilinear recurrence sequences. The element-wise product
sequence (un) (or sum sequence (vn)) of (sn) and (tn) is defined by un = sntn
(or vn = sn + tn) for all n ∈ N. It can easily be seen that the set of bilinear
recurrence sequences is closed under this multiplication. Furthermore, if (sn)
and (tn) are elliptic divisibility sequences, then (un) is a quaternary bilinear
recurrence sequence which satisfies the recurrence relation

(1.2) un+4un−4 = λ1un+3un−3 + λ2un+2un−2 + λ3un+1un−1 + λ4u
2
n,

where λ1, λ2, λ3, λ4 are constants. Moreover, although the product and sum
sequences are not elliptic divisibility sequences many similar results can be
obtained for these sequences, for example, they are periodic sequences. In
Section 2, it is shown that the product and sum sequences are periodic modulo
a prime p, and the periodicity properties of product sequences are studied in
Section 3. In Section 4, we generalize our results to the case of reduction
modulo prime powers. Finally, in Section 5, the p-adic behavior of product
sequences is considered and a generalization of [9, Theorem 4] is given.

2. Periodicity modulo p

A sequence (sn) of rational integers is said to be numerically periodic modulo
m if there exists a positive integer π such that

(2.1) sn+π ≡ sn (modm)

for all sufficiently large n. If (2.1) holds for all n, then (sn) is said to be purely
periodic modulo m. The smallest integer π for which (2.1) is true is called the
period of (sn) modulo m, and all other periods are multiples of it. An integer
m said to be a divisor of the sequence (sn) if it divides some term sk with
k > 0. If m divides sk but does not divide sl when l is a proper divisor of k,
then k is called a rank of apparition of m in (sn).

M. Ward showed that elliptic divisibility sequences modulo a prime are peri-
odic, indeed EDSs are numerically periodic for any prime p and purely periodic
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for all primes which do not divide both s3 and s4 and the period is some multi-
ple of the rank of apparition. Ward also proved that every prime p has exactly
one rank of apparition r in (sn) if and only if gcd(s3, s4) = 1 and it satisfies
r ≤ 2p+ 1.

The following theorem shows that if (sn) and (tn) are proper elliptic divisi-
bility sequences, then the product and sum of these sequences is purely periodic
for all primes which do not divide the terms s3, s4 and t3, t4. The proof of
the theorem is similar to the proofs of [6, Theorems 6.61 and 6.70] for linear
sequences.

Theorem 2.1. Let (sn) and (tn) be purely periodic elliptic divisibility sequences
modulo a prime p with periods π1 and π2, respectively. Then

(i) the element-wise product sequence (un) is also purely periodic modulo p,
and its period π is a divisor of lcm [π1, π2]. Furthermore if gcd(π1, π2) = 1,
then π = π1π2.

(ii) the element-wise sum sequence (vn) is also purely periodic modulo p, and
its period π is a divisor of lcm [π1, π2]. Furthermore if gcd(π1, π2) = 1, then
π = π1π2.

Proof. (i) If (sn) and (tn) are purely periodic elliptic divisibility sequences
modulo a prime p with periods π1 and π2, respectively, then lcm [π1, π2] is a
period of the sequences (sn) and (tn). Let ρ = lcm [π1, π2], then

un+ρ = sn+ρtn+ρ ≡ sntn = un (mod p)

for all n. It follows that the element-wise product sequence (un) is also purely
periodic modulo p and moreover lcm [π1, π2] is a period of (un). Therefore the
least period π of (un) divides lcm [π1, π2].

Let π = k1k2 where k1 and k2 are divisors of π1, π2 respectively. It is clear
that k1π2 is a period of (un), that is,

un+k1π2 = sn+k1π2tn+k1π2 ≡ sntn = un (mod p)

for all n. From the last congruence we have

(2.2) sn+k1π2tn ≡ sntn (mod p)

for all n, since tn ≡ tn+k1π2
(mod p) for all n. On the other hand there exists

an integer k with tr 6= 0 for all r ≡ k (modπ2), therefore

sr+k1π2
≡ sr (mod p)

for all such r by (2.2). Now let gcd(π1, π2) = 1. Then we can choose an integer
m ≥ n with m ≡ n (modπ1) and m ≡ k (modπ2) by the Chinese remainder
theorem. Thus,

sn ≡ sm ≡ sm+k1π2
≡ sn+k1π2

(mod p)

and hence k1π2 is a period of (sn). It follows that π1|k1π2 and so π1|k1 since
gcd(π1, π2) = 1. Therefore k1 = π1. Similarly, one can obtain that k2 = π2.
Thus we derive that if gcd(π1, π2) = 1, then π = π1π2.
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(ii) As in the proof of part (i), one can show that the element-wise sum
sequence (vn) is also purely periodic modulo p and moreover lcm [π1, π2] is a
period of (vn). Hence, the least period π of (vn) divides lcm [π1, π2].

Let π = k1k2 where k1 and k2 are divisors of π1, π2 respectively. Now k1π2

is a period of (vn), that is,

vn+k1π2
= sn+k1π2

+ tn+k1π2
≡ sn + tn = vn (mod p)

for all n. On the other hand tn ≡ tn+k1π2
(mod p) for all n, and so sn ≡ sn+k1π2

(mod p) for all n. It follows that π1|k1π2 and if gcd(π1, π2) = 1, then π1|k1
and so k1 = π1. Similarly, one can show that k2 = π2. Thus we derive that if
gcd(π1, π2) = 1, then π = π1π2. �

In general, the finite product (or sum) of proper elliptic divisibility sequences
is periodic modulo a prime.

Theorem 2.2. Let (s1n), . . . , (smn) be purely periodic elliptic divisibility se-
quences modulo a prime p with periods π1, . . . , πm respectively. Then

(i) the element-wise product sequence (un) is also purely periodic modulo p,
and its period π is a divisor of lcm [π1, . . . , πm]. Furthermore if π1, . . . , πm are
pairwise relatively prime, then π = π1 · · · πm.

(ii) the element-wise sum sequence (vn) is also purely periodic modulo p,
and its period π is a divisor of lcm [π1, . . . , πm]. Furthermore if π1, . . . , πm are
pairwise relatively prime, then π = π1 · · · πm.

Proof. As a consequence of the above argument, we proved the theorem for the
case n = 2 and the general case of the theorem follows easily by induction. �

3. Periodicity properties of product sequences

In this section we study the periodicity properties of product of two elliptic
divisibility sequences and give some formulas for computing the least period
of these sequences. Elliptic divisibility sequences possess certain periodicity
properties named symmetry properties after M. Ward. These properties are
given by Ward [14, Theorems 8.1, 8.2, and 9.2] in the following theorem.

Theorem 3.1. Let (sn) be an elliptic divisibility sequence, let p be an odd
prime and suppose gcd(p, s2s3) = 1. Let r denote the rank of apparition of p
in (sn). Then there exist integers a, b, c with ac ≡ 1 (mod p) such that for all
non-negative integers n and k

(3.1) sr−n ≡ anbsn, sr+n ≡ −bcnsn (mod p)

and

(3.2) srk+n ≡ (−1)kbk
2

cknsn (mod p).

Furthermore, the integers a and b satisfy the congruences

a ≡ sr−2
sr−1s2

, b ≡
s2r−1s2

sr−2
and arb2 ≡ 1 (mod p).
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As an immediate consequence of the above theorem we deduce the following
corollary which will be used later.

Corollary 3.2. Let (sn) be an elliptic divisibility sequence. With the notation
of Theorem 3.1, the following congruence holds for all non-negative integers n
and k

(3.3) srk−n ≡ (−1)k+1aknbk
2

sn (mod p).

Proof. We proceed by induction on k. If k = 1, then the result is true by
Theorem 3.1. Now suppose that the result is true for k = q. Then the first
congruence in (3.1) implies that

s(q+1)r−n = sr−(n−rq) ≡ an−rqbsn−rq (mod p)

and hence
s(q+1)r−n ≡ (−1)an−rqbsrq−n (mod p)

since s−n = −sn for all n ∈ N. Then by the induction hypothesis we have

(−1)an−rqb(−1)q+1aqnbq
2

sn ≡ (−1)q+2a(q+1)na−rqbq
2+1sn (mod p).

Now as arb2 ≡ 1 (mod p) it follows that a−rq ≡ b2q (mod p). Therefore

s(q+1)r−n ≡ (−1)q+2a(q+1)nb(q+1)2sn (mod p).

Thus we proved the congruence (3.3) is true for k = q + 1. �

Now we study periodicity properties of product sequences. We give some
congruences, theorems, and a simple useful lemma that will be needed. Let
(sn) and (tn) be elliptic divisibility sequences, let p be an odd prime, and
suppose that gcd(p, s2s3) = 1 and gcd(p, t2t3) = 1. Let r1 and r2 be the ranks
of apparition of p in (sn) and (tn) respectively. Then by Theorem 3.1, there
exist integers a1, b1 and a2, b2 with a1c1 ≡ 1, a2c2 ≡ 1 (mod p) such that for
all non-negative integers n and k1, k2

sr1k1+n ≡ (−1)k1ck1n1 b
k21
1 sn (mod p)

and

tr2k2+n ≡ (−1)k2ck2n2 b
k22
2 tn (mod p).

Furthermore these integers satisfy the following congruences

(3.4) a1 ≡
sr1−2
sr1−1s2

, b1 ≡
s2r1−1s2

sr1−2
and ar11 b

2
1 ≡ 1 (mod p)

and

(3.5) a2 ≡
tr2−2
tr2−1t2

, b2 ≡
t2r2−1t2

tr2−2
and ar22 b

2
2 ≡ 1 (mod p).

We will see that an element-wise product sequence of two purely periodic
elliptic divisibility sequences is also periodic modulo a prime p and similar
symmetry properties hold for the product sequences in the following theorems.
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Theorem 3.3. Let (un) denote the element-wise product sequence of the elliptic
divisibility sequences (sn) and (tn). Suppose p is an odd prime which divides
neither s2t2 nor s3t3. Let r1 and r2 be the ranks of apparition of p in (sn) and
(tn), respectively and write lcm [r1, r2] = r∗. Then there exist integers A,B,C
with

(3.6) AC ≡ 1 (mod p)

such that for all non-negative integers n and k

(3.7) ur∗−n ≡ AnBun, ur∗+n ≡ BCnun (mod p)

and

(3.8) ur∗k+n ≡ Bk
2

Cknun (mod p).

The integers can be computed from the congruences

A ≡ ak11 a
k2
2 and B ≡ (−1)k1+k2b

k21
1 b

k22
2 (mod p),

where a1, a2 and b1, b2 are the integers specified in (3.4) and (3.5) for the elliptic
divisibility sequences (sn) and (tn), respectively and k1 = r∗/r1, k2 = r∗/r2.
Furthermore, the following congruences hold

(3.9) A ≡ ur∗−2
ur∗−1u2

, B ≡
u2r∗−1u2

ur∗−2
and Ar

∗
B2 ≡ 1 (mod p).

Proof. By Corollary 3.2 and Theorem 3.1, we have

s
r∗−n

≡ (−1)k1+1ak1n1 b
k21
1 sn and s

r∗+n
≡ (−1)k1ck1n1 b

k21
1 sn (mod p)

and

t
r∗−n

≡ (−1)k2+1ak2n2 b
k22
2 tn and t

r∗+n
≡ (−1)k2ck2n2 b

k22
2 tn (mod p),

where r∗ = lcm [r1, r2] and k1 = r∗/r1, k2 = r∗/r2. Therefore

u
r∗−n

≡ (−1)k1+k2ak1n1 ak2n2 b
k21
1 b

k22
2 un ≡ AnBun (mod p)

and

u
r∗+n

≡ (−1)k1+k2ck1n1 ck2n2 b
k21
1 b

k22
2 un ≡ BCnun (mod p),

where

A ≡ ak11 a
k2
2 , B ≡ (−1)k1+k2b

k21
1 b

k22
2 and C ≡ ck11 c

k2
2 (mod p).

Thus we have proved (3.7). The values A and B for the element-wise product
sequence (un) can be obtained by setting n = 1 and then n = 2 in the first
congruence of (3.7) which gives the first part of (3.9). By setting n = 1 and
then n = r∗ − 1 in the first congruence of (3.7) we obtain Ar

∗
B2 ≡ 1 (mod p)

which gives the second part of (3.9). Finally, the last congruence of (3.9) and
the congruence (3.6) implies that B2 ≡ Cr

∗
(mod p), so the congruence (3.8)

can be proved by induction on k and using the fact that B2 ≡ Cr∗(mod p). �
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Theorem 3.4. Let (un) denote the element-wise product sequence of the elliptic
divisibility sequences (sn) and (tn). Let p be an odd prime which divides neither
s2t2 nor s3t3. Let r1 and r2 be the ranks of apparition of p in (sn) and (tn),
respectively and write lcm [r1, r2] = r∗. Let τ be the least integer such that

(3.10) Bτ
2

≡ 1, Cτ ≡ 1 (mod p).

Then (un) is purely periodic modulo p with period τr∗.

Proof. If τ is the defined as in the theorem and if k is an integer such that

Bk
2

≡ 1, Ck ≡ 1 (mod p),

then it can easily be seen that τ divides k. The congruence (3.8) implies that

ur∗τ+n ≡ Bτ
2

Cτnun (mod p)

and hence (un) is purely periodic modulo p with period dividing τr∗.
Now since un ≡ 0 (mod p) if and only if n ≡ 0 (mod r∗), the period must be

a multiple of r∗. For instance, if π = mr∗, then m|τ . On the other hand, by
(3.8) we have

un ≡ umr∗+n ≡ Bm
2

Cmnun (mod p)

and hence Bm
2

Cmn ≡ 1 (mod p) for all non-negative integers n. By putting
n = 1 and then n = 2 in the last congruence we obtain Cm ≡ 1 (mod p) and

so Bm
2 ≡ 1 (mod p). Therefore m ≥ τ and hence m = τ . �

The intimate relation between the rank of apparition and period of an EDS
is given by the following periodicity theorem.

Theorem 3.5 ([14]). Let (sn) be an EDS and p be an odd prime whose rank of
apparition r is greater than 3. Let e be an integral solution of the congruence
e ≡ s2/sr−2 (mod p) and let ε and κ be the least positive integers such that
eε ≡ 1 and sκr−1 ≡ 1 (mod p), respectively. Then (sn) is purely periodic modulo
p, and its period π is given by the formula π(sn) = τr where τ = 2α lcm[ε, κ]
and the exponent α is determined as follows:

α =


+1 if ε and κ are both odd,

−1
if ε and κ are both even and both divisible
by exactly the same power of 2,

0 otherwise.

We state a lemma to prove the main periodicity theorem for the product
sequences.

Lemma 3.1 ([14]). Let p be an odd prime and d be an integer with gcd(p, d) =
1. Let δ be the least positive integer such that dδ ≡ 1 (mod p). Then if δ is
odd, there exists no integer x such that the congruence dx ≡ −1 (mod p) is
satisfied. But if δ is even the last congruence is satisfied if and only if x is an
odd multiple of δ/2.
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In the following theorem we see that periodicity properties similar to those
in Theorem 3.5 hold for product sequences, moreover the period of a product
sequence is determined by the relation between the ranks and periods of the
given elliptic divisibility sequences.

Theorem 3.6. Let (un) denote the element-wise product sequence of the el-
liptic divisibility sequences (sn) and (tn). Let p be an odd prime which divides
neither s2t2 nor s3t3. Let r1 and r2 be the ranks of apparition of p in (sn) and
(tn), respectively and write lcm [r1, r2] = r∗. Let E be an integral solution of
the congruence

(3.11) E ≡ u2
ur∗−2

(mod p)

and let ε and κ be the least positive integers such that Eε ≡ 1, uκr∗−1 ≡ 1
(mod p), respectively. Then (un) is purely periodic modulo p with period τr∗

where τ = 2α lcm[ε, κ] and

α =

 −1
if ε and κ are both even and both divisible
by 2x with exactly the same power x ≥ 2,

0 otherwise.

Proof. First observe that the congruences (3.6), (3.9) and (3.11) imply that

(3.12) E ≡ C

ur∗−1
≡ C2

B
(mod p)

and hence

(3.13) B ≡ Cur∗−1 (mod p).

Then by (3.12) and (3.13) we obtain

(3.14) Eτuτr∗−1 ≡ 1 (mod p)

and

(3.15) Bτ ≡ uτr∗−1(mod p)

since τ is the smallest integer such that Cτ ≡ 1 (mod p) by (3.10). On the
other hand, as Cτ ≡ 1 (mod p), we have Cτr

∗ ≡ 1 (mod p). Then we derive
that

Cτr
∗
≡ B2τ ≡ 1 (mod p),

since Cr
∗ ≡ B2 (mod p) by (3.9) and (3.6). It follows that Bτ ≡ 1 or Bτ ≡ −1

(mod p).
Now suppose that Bτ ≡ 1 (mod p). Then by (3.15)

(3.16) uτr∗−1 ≡ 1 (mod p)

and hence

(3.17) Eτ ≡ 1 (mod p)

by (3.14). Now let ε and κ be the least positive integers such that Eε ≡ 1,
uκr∗−1 ≡ 1 (mod p), and let σ = lcm[ε, κ]. Then the congruences (3.16) and
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(3.17) imply that ε|τ and κ|τ , and hence σ|τ . Furthermore, uσr∗−1 ≡ 1 and
Eσ ≡ 1 (mod p). Then by (3.12) and (3.13) we have

Cσ ≡ 1 and Bσ ≡ 1 (mod p).

The last congruence implies that Bσ
2 ≡ 1 (mod p). Then τ |σ since τ is the

smallest integer such that Bτ
2 ≡ 1, Cτ ≡ 1 (mod p). Hence τ = σ.

Now suppose that Bτ ≡ −1 (mod p). Then by (3.10), Bτ
2 ≡ (Bτ )τ ≡

(−1)τ ≡ 1 (mod p). Therefore τ must be even. On the other hand (3.15)
implies that uτr∗−1 ≡ −1 (mod p), and so Eτ ≡ −1 (mod p) by (3.14). By
Lemma 3.1, ε and κ are both even and τ is an odd multiple of both ε/2 and
κ/2. Therefore ε and κ are both even and both divisible by 2x with exactly
the same power x ≥ 2 since τ is even. Now write σ = 1

2 lcm[ε, κ] then σ|τ . By
Lemma 3.1, σ is an odd multiple of both ε/2 and κ/2, that is, σ = ε

2m and
σ = κ

2n for odd integers m,n. Conversely, if ε and κ are both even and both
divisible by 2x with exactly the same power x ≥ 2, then σ is an odd multiple
of both ε

2 and κ
2 . Then by Lemma 3.1,

uσr∗−1 ≡ −1, Eσ ≡ −1 (mod p).

Thus by (3.12) and (3.13)

Cσ ≡ 1, Bσ ≡ −1 (mod p).

As σ is always even, Bσ
2 ≡ 1 (mod p) and so it can easily be seen that τ |σ.

Hence τ = σ. �

4. Periodicity modulo pl

In [13], Ward considers elliptic divisibility sequences modulo pl for primes
p greater than three with ranks of apparition greater than three and positive
integers l. Ward called such primes regular and proved that if r > 3 is the rank
of a regular prime in an elliptic divisibility sequence (sn) and pk is the highest
power of p dividing sr, then the rank of apparition of pl in (sn) is r or pl−kr
according as l ≤ k or l > k by using the elliptic function theory.

Shipsey [7] considers periodicity properties of elliptic divisibility sequence
(sn) modulo p2 for some prime p > 3. She gave a symmetry formula for the
value of smr modulo p2 for m ≥ 1, where r is the rank of apparition of p in (sn)
[7, Theorem 3.5.4]. Then she obtains the periodicity of the sequence (smr)m≥1
modulo p2 by using the symmetry formula. Ayad [1] and Swart [12], generalize
Shipsey’s symmetry properties to the case of modulo pl for some prime p > 3
and positive integer l.

Theorem 4.1 ([1], [12]). Let (sn) be an elliptic divisibility sequence and let
p > 3 be a regular prime whose rank of apparition in (sn) is r > 3. Let the
rank of apparition of pl in (sn) be rl. Then there exist integers bl, cl such that
for all non-negative integers n and k

srl+n ≡ −blcnl sn (mod pl)
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and
srlk+n ≡ (−1)k

2

bk
2

l c
kn
l sn (mod pl),

where

bl ≡
s2rl−1s2

srl−2
, cl ≡

srl−1s2
srl−2

(mod pl).

In this section we consider the element-wise product of two elliptic divisibility
sequences modulo pl for some prime p > 3 and positive integer l and obtain
similar periodicity properties for the element-wise product sequences. The
proofs are elementary and are based on the proofs of Theorems 3.3, 3.4 and
3.6.

Theorem 4.2. Let (un) denote the element-wise product sequence of the elliptic
divisibility sequences (sn) and (tn). Suppose p is a regular prime greater than
three. Let r1, r2 > 3 be the ranks of apparition of p in (sn) and (tn), respectively
and write pl−1 lcm [r1, r2] = r∗l . Then there exist integers Bl, Cl such that for
all non-negative integers n and k

ur∗l +n ≡ BlC
n
l un (mod pl)

and
ur∗l k+n ≡ B

k2

l C
kn
l un (mod pl).

Furthermore the integers can be computed from the congruences

Bl ≡
u2r∗l −1

u2

ur∗l −2
and Cl ≡

ur∗l −1u2

ur∗l −2
(mod pl).

Theorem 4.3. Let (un) denote the element-wise product sequence of the elliptic
divisibility sequences (sn) and (tn). Suppose p is a regular prime greater than
three. Let r1, r2 > 3 be the ranks of apparition of p in (sn) and (tn), respectively
and write pl−1 lcm [r1, r2] = r∗l . Let τ l be the least integer such that

B
τ2
l

l ≡ 1, Cτ l

l ≡ 1 (mod pl).

Then (un) is purely periodic modulo pl with period τ lr
∗
l .

Theorem 4.4. Let (un) denote the element-wise product sequence of the elliptic
divisibility sequences (sn) and (tn). Suppose p is a regular prime greater than
three. Let r1, r2 > 3 be the ranks of apparition of p in (sn) and (tn), respectively
and write pl−1 lcm [r1, r2] = r∗l . Let El be an integral solution of the congruence

(4.1) El ≡
u2

ur∗l −2
(mod pl)

and let εl and κl be the least positive integers such that Eεl ≡ 1, uκr∗l −1
≡ 1

(mod pl), respectively. Then (un) is purely periodic modulo pl with period τ lr
∗
l

where τ l = 2αl lcm[εl, κl] and

αl =

 −1
if ε and κ are both even and both divisible
by 2x with exactly the same power x ≥ 2,

0 otherwise.
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We can generalize Theorems 2.1 and 2.2 to the case of modulo pl for some
prime p > 3 and positive integer l. The proofs are elementary and are similar
to that of Theorems 2.1 and 2.2.

Theorem 4.5. Let (sn) and (tn) be purely periodic elliptic divisibility sequences
modulo a prime power pl with periods π1 and π2, respectively. Then

(i) the element-wise product sequence (un) is also purely periodic modulo pl,
and its period π is a divisor of lcm [π1, π2]. Furthermore if gcd(π1, π2) = 1,
then π = π1π2.

(ii) the element-wise sum sequence (vn) is also purely periodic modulo pl

with period lcm [π1, π2]. Furthermore if gcd(π1, π2) = 1, then π = π1π2.

In general, the finite product (or sum) of proper elliptic divisibility sequences
is periodic modulo a prime power.

Theorem 4.6. Let (s1n), . . . , (smn) be purely periodic elliptic divisibility se-
quences modulo a prime pl with periods π1, . . . , πm, respectively. Then

(i) the element-wise product sequence (un) is also purely periodic modulo pl

and its period π is a divisor of lcm [π1, . . . , πm]. Furthermore if π1, . . . , πm are
pairwise relatively prime, then π = π1 · · ·πm.

(ii) the element-wise sum sequence (vn) is also purely periodic modulo pl

with period lcm [π1, . . . , πm]. Furthermore if π1, . . . , πm are pairwise relatively
prime, then π = π1 · · ·πm.

5. p-adic convergence of product sequences

Consider an elliptic curve E(K) defined over a field K by a Weierstrass
equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

The division polynomials ψn ∈ Z[a1, . . . , a6, x, y] for the curve E are defined
using the initial values

ψ1 = 1,

ψ2 = 2y + a1x+ a3,

ψ3 = 3x4 + b2x
3 + 3b4x

2 + 3b6x+ b8,

ψ4 = ψ2(2x6 + b2x
5 + 5b4x

4 + 10b6x
3 + 10b8x

2 + (b2b8−b4b6)x+ (b4b8−b26)),

where bi are the usual quantities [10, Chapter III.1] and by the formulas

ψ2m+1 = ψm+2ψ
3
m − ψm−1ψ

3
m+1 for m ≥ 2,

ψ2mψ2 = ψ2
m−1ψmψm+2 − ψm−2ψmψ

3
m+1 for m ≥ 3.

The n-th division polynomial ψn has divisor∑
T ∈ E[n]

(T )− n2(O),

where E[n] is the n-torsion subgroup of E(K). The basic properties of division
polynomials can be found in [10]. These polynomials arises in expressing the
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coordinates of nP in terms of a point P ∈ E(K). Ward [14] proved that a
proper elliptic divisibility sequence (sn) is associated an elliptic curve E and a
point P ∈ E(Q). Furthermore, he showed that these sequences arise as values
of the division polynomials ψn(P )n≥1 where ψn(P )n≥1 is evaluated at the point
P = (x, y) of ψn. Silverman [9] considered the sequence of values ψn(P )n≥1
of division polynomials. Silverman [9, Theorem 1] used a lift to characteristic
zero and the Lefschetz principle to prove that the division polynomials over
finite fields form a purely periodic sequence, which is inspired by a similar
result of Ward for elliptic divisibility sequences. Theorem 2 of [9] uses the
Mazur-Tate p-adic σ-function to prove that there is a power q = pe for which
the sequence (ψmqk(P )) converges as k →∞ in Zp for all m ≥ 1, in addition,
if E and P are defined over Q, then the limit of this sequence is algebraic
over Q, and in an addendum Silverman connects this result with Ayad’s work
[1]. In [9, Theorem 3], the periodicity of these sequences modulo prime powers
is proved by using similar techniques in the proof of [9, Theorem 2]. As an
application, Silverman partially answered a question, which was raised in [11],
about the p-adic behavior of elliptic divisibility sequences [9, Theorem 4]. More
precisely; Theorem 4 of [9] says that if (sn) is a proper elliptic divisibility
sequence and the associated elliptic curve E is non-singular, and does not have
complex multiplication, then for almost all primes p, in the sense of density,
the following two statements are true.

(i) There is an exponent N = Np ≥ 1 so that for every m ≥ 1, the limit

lim
k→∞

smpkN converges in Zp.

(ii) The limit given by (i) is algebraic over Q.
Theorems 4.5 and 4.6 show that an element-wise product sequence of proper

elliptic divisibility sequences is purely periodic modulo pl for some prime p > 3
and positive integer l. The periodicity of the product sequences modulo prime
powers raises a question about the p-adic behavior of product sequences. The
following theorem is a generalization of [9, Theorem 4] to the case of a product
of proper elliptic divisibility sequences.

Theorem 5.1. Let (sn) and (tn) be proper elliptic divisibility sequences and let
(un) be element-wise product of (sn) and (tn). Let S and T be sets of primes
such that the associated elliptic curves to these sequences are non-singular and
do not have complex multiplication, respectively. Then for almost all primes
p ∈ S ∩ T , in the sense of arithmetic density, the following statements are
true.

(i) There is an exponent N = Np ≥ 1 so that for every m ≥ 1, the limit

lim
k→∞

umpkN converges in Zp.

(ii) The limit is algebraic over Q.

Proof. Let P (k) be the set of all primes less than k and let S(k) be the subset
of P (k) such that the statements (i) and (ii) are true. Then the expression
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“almost all primes in S, in the sense of arithmetic density” means that

lim
k→∞

|S(k)|
|P (k)|

= 1.

If the statements (i) and (ii) are true for almost all primes in S and T , in the
sense of arithmetic density, then the statements (i) and (ii) are true for almost
all primes in S ∩ T . Indeed,

lim
k→∞

|S(k) ∪ T (k)|
|P (k)|

= 1

since limk→∞
|S(k)|
|P (k)| = limk→∞

|T (k)|
|P (k)| = 1, and therefore

lim
k→∞

|S(k) ∩ T (k)|
|P (k)|

= 1

since |S(k) ∪ T (k)| = |S(k)|+ |T (k)| − |S(k) ∩ T (k)|.
On the other hand, it can easily be seen that if (xn) and (yn) are any

convergent sequences in Zp, then the product sequence (xnyn) is a convergent
sequence in Zp, and the equation

lim
n→∞

(xnyn) = lim
n→∞

(xn) lim
n→∞

(yn)

holds in Zp. Moreover if the limits limn→∞(xn) and limn→∞(yn) are alge-
braic numbers, then the limit limn→∞(xnyn) is an algebraic number since the
product of two algebraic numbers is algebraic.

By Theorem 4.5, the product sequence (un) is purely periodic modulo a
prime power and so the proof follows from the choice of the primes and [9,
Theorem 4]. �

As a consequence of the above theorem we have the following corollary.

Corollary 5.2. Let (s1n), . . . , (smn) be proper elliptic divisibility sequences
and let (un) be element-wise product of these sequences. Let S1, . . . , Sm be sets
of primes such that the associated elliptic curves to these sequences are non-
singular and do not have complex multiplication, respectively. Then for almost
all primes p ∈ S1 ∩ · · · ∩ Sm, in the sense of arithmetic density, the following
statements are true.

(i) There is an exponent N = Np ≥ 1 so that for every m ≥ 1, the limit

lim
k→∞

umpkN converges in Zp.

(ii) The limit is algebraic over Q.
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