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COMPLETE WEIGHT ENUMERATORS OF SOME CLASSES

OF LINEAR CODES WITH A FEW WEIGHTS

Yiwei Liu and Zihui Liu

Abstract. By choosing defining set properly, several classes of linear

codes with a few weights over the finite field Fp are constructed for an
odd prime p, and the complete weight enumerators of these classes of

codes are determined.

1. Introduction

Recently, by using a defining set, linear codes with a few weights have been
extensively constructed and studied due to their applications to secret sharing,
authentication codes, association schemes and strongly regular graphs [4], [5],
[9]. The paper is to give further new results along this line, and we will con-
struct several classes of codes with a few weights by choosing the defining set
accordingly, and then we will determine the complete weight enumerators of
these classes of codes.

Let p be an odd prime, and let Fq be the finite field with q = pm elements
throughout this paper. Assume m = es, m, e and s ≥ 2 are positive integers.
A p-ary [n, k, d] linear code C is defined as a k-dimensional subspace of Fnp with
minimum Hamming distance d. The code C is called optimal if no [n, k, d+ 1]
code exists, and is called almost optimal if the code [n, k, d + 1] is optimal [6,
Chapter 2].

Denote Fp = {w0, w1, . . . , wp−1} the finite field with p elements, where
wi = i for 0 ≤ i ≤ p − 1, and denote F∗p = Fp\{0}. For a codeword
c = (c0, c1, . . . , cn−1) ∈ Fnp , define

w[c] = wk00 w
k1
1 · · ·w

kp−1

p−1 ,

where kj is the number of components of c equal to wj , and
∑p−1
j=0 kj = n. For

any (k0, . . . , kp−1) with
∑p−1
j=0 kj = n, define

θk0···kp−1
= |{c ∈ C : w[c] = wk00 w

k1
1 · · ·w

kp−1

p−1 }|.
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Then, the complete weight enumerator (CWE) of C is defined as

CWE(C) =
∑
c∈C

w[c] =
∑

θk0···kp−1
6=0

θk0···kp−1
wk00 w

k1
1 · · ·w

kp−1

p−1 .

Thus, the key to determining CWE(C) of a linear code C is determining those
θk0···kp−1

such that θk0···kp−1
6= 0.

The complete weight enumerator of C could be helpful in soft decision de-
coding [2], and it can also be applied to the calculation of the deception prob-
abilities of certain authentication codes [4]. Many new results are dedicated
to determining the complete weight enumerators of codes constructed by using
defining set [1], [11].

Let Trme denote the trace function from Fq onto Fpe , namely, Trme (x) =∑m/e−1
k=0 xp

ke

. Assume f is a function over Fq. For any set D = {d1, d2, . . . , dn}
⊆ F∗q , we may construct a linear code of length n over Fp as follows

CD = {(Trm1 (xf(d1)), T rm1 (xf(d2)), . . . , T rm1 (xf(dn))) : x ∈ Fq},

and call D the defining set of CD [3].
By choosing the defining set properly, many classes of codes with a few

weights have been obtained [3], [5], [7], [9], [10], [11]. It is interesting that
in [11] the complete weight enumerators of CD are determined, where D and
CD are given as follows, respectively,

(1)
D = {x ∈ F∗q : Trm1 (x) = 0} = {d1, d2, . . . , dn},
CD = {(Trm1 (xd21), T rm1 (xd22), . . . , T rm1 (xd2n)) : x ∈ Fq}.

In this paper, we will determine the complete weight enumerators of the
code CD in (1) by replacing D by Da, where

Da = {x ∈ F∗q : Trme (x) = a} = {d1, d2, . . . , dn},

and a is any element of Fpe (recall m = es). Obviously, the result in [11] can
be considered as a special of this paper by taking e = 1 and a = 0.

Let ρ ∈ Fp, define

n(b,a)(ρ) = |{x ∈ Fq : Trme (x) = a and Trm1 (bx2) = ρ}|.

Then, for any b ∈ F∗q , the codeword cb ∈ CD obtained by taking x as b in (1)
satisfies

(2) w[cb] = wk00 w
k1
1 · · ·w

kp−1

p−1 , where kρ = n(b,a)(ρ).

To calculate kρ = n(b,a)(ρ) for 0 ≤ ρ ≤ p − 1, it suffices to get each kρ for

ρ > 0 since
∑p−1
ρ=0 kρ =

∑p−1
ρ=0 n(b,a)(ρ) = n. Thus, we will focus on determining

n(b,a)(ρ) for ρ 6= 0 in the sequel.
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2. Preliminaries

We present some results of group characters, exponential sums, and Gauss
sums for later use, please see [8] for the details. An additive character χ of Fq
is a function from Fq to the set of complex numbers of absolute value 1 such
that χ(x+ y) = χ(x)χ(y) for all x, y ∈ Fq. For each b ∈ Fq, the function

(3) χ(b)(x) = ζTr(bx)p ,∀x ∈ Fq

defines an additive character of Fq, where ζp = e
2π
√
−1
p , and every additive char-

acter of Fq can be obtained in this way. When b = 0, the character χ(0)(x) = 1
for all x ∈ Fq and is called the trivial character of Fq. All other additive char-

acter are called non-trivial. When b = 1, the character χ(1) in (3) is called the
canonical additive character of Fq. It is obvious that χ(b)(x) = χ(1)(bx).

The orthogonal property of additive characters of Fq which can be found in
Theorem 5.4 in [8] is given by

(4)
∑
x∈Fq

χ(x) =

{
q, if χ is trivial,
0, if χ is non-trivial.

Characters of the multiplicative group F∗q of Fq are called multiplicative char-
acter of Fq. By Theorem 5.8 in [8], for each j = 0, 1, . . . , q− 2, the function ψj
with

ψj(g
k) = e2π

√
−1jk/(q−1) for k = 0, 1, . . . , q − 2

defines a multiplicative character of Fq, where g is a generator of F∗q . For
j = (q − 1)/2, we have the quadratic character η = ψ(q−1)/2 defined by

η(gk) =

{
−1, if 2 - k,
1, if 2 | k.

In the sequel, we assume that η(0) = 0.
We define the quadratic Gauss sum G(η, χ) over Fq by

(5) G(η, χ) =
∑
x∈F∗q

η(x)χ(x).

In this paper, we denote ηm and χm as the quadratic character and the
canonical additive character over Fpm , respectively. Let Gm denote G(ηm, χm).
Then the explicit values of quadratic Gauss sums Gm are given as follows.

Lemma 1 ([8], Theorem 5.15). Let the symbols be the same as previous, q =
pm. Then

Gm = (−1)m
√
q,

where (−1)m = (−1)(m−1)
√
−1

(p−1)2m
4 .

Lemma 2. Let the symbols be the same as before. Then

(i) if s is even, then ηm(y) = 1 for each y ∈ F∗pe ;
(ii) if s is odd, then ηm(y) = ηe(y) for each y ∈ F∗pe .
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Proof. Let g be a generator of F∗pm . Notice that every y ∈ F∗pe can be expressed

as g
pm−1
pe−1 j , where 0 ≤ j ≤ pe − 2. Since p is odd, then

pm − 1

pe − 1
= 1 + pe + · · ·+ pe(s−1) ≡ s mod 2.

Hence, every element y ∈ F∗pe is a square in F∗pm when s is an even positive
integer, and ηm(y) = ηe(y) for each y ∈ F∗pm when s is odd. This completes
the proof. �

Lemma 3 ([8], Theorem 5.33). Let χ be a non-trivial additive character of Fq,
q = pm, and let f(x) = a2x

2 + a1x+ a0 ∈ Fq[x] with a2 6= 0. Then∑
x∈Fq

χ(f(x)) = χ
(
a0 − a21(4a2)−1

)
ηm(a2)G(ηm, χ).

Lemma 4. For each c ∈ Fpe , let

Mc = {x ∈ F∗q : ηm(x) = −1 and Trme (x−1) = c}.

Then

|Mc| =


q−pe
2pe , if s is odd and c = 0,
q

2pe −
1
2 (−1)

(p−1)e
2 (−1)m+eηe(c)p

m−e
2 , if s is odd and c 6= 0,

q−pe
2pe −

1
2 (−1)m(pe − 1)p

m−2e
2 , if s is even and c = 0,

q
2pe + 1

2 (−1)mp
m−2e

2 , if s is even and c 6= 0.

Proof. By (4), (5) and Lemma 2 for any c ∈ Fpe , we have

|Mc| =
1

2pe

∑
x∈F∗q

(1− ηm(x))

 ∑
y∈Fpe

ζ
Tre1(y(Tr

m
e (x)−c))

p


=

1

2pe

∑
x∈F∗q

∑
y∈Fpe

ζ
Tre1(y(Tr

m
e (x)−c))

p

− 1

2pe

∑
x∈F∗q

ηm(x)
∑
y∈Fpe

ζ
Tre1(y(Tr

m
e (x)−c))

p

=
1

2pe

∑
x∈Fq

∑
y∈Fpe

ζ
Tre1(y(Tr

m
e (x)−c))

p −
∑
y∈Fpe

ζ
Tre1(−yc)
p


− 1

2pe

∑
x∈F∗q

ηm(x)
∑
y∈F∗

pe

ζ
Tre1(y(Tr

m
e (x)−c))

p

=
1

2pe

q − ∑
y∈Fpe

ζ
Tre1(−yc)
p


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− 1

2pe

∑
y∈F∗

pe

ηm(y)ζ
Tre1(−yc)
p

∑
x∈F∗q

ηm(yx)ζ
Trm1 (yx)
p

=
q

2pe
− 1

2pe

∑
y∈Fpe

ζ
Tre1(−yc)
p − 1

2pe
Gm

∑
y∈F∗

pe

ηm(y)ζ
Tre1(−yc)
p

=



q

2pe
− 1

2pe

∑
y∈Fpe

ζ
Tre1(−yc)
p − 1

2pe
ηe(−c)Gm

∑
y∈F∗

pe

ηe(−yc)ζ
Tre1(−yc)
p ,

if s is odd,

q

2pe
− 1

2pe

∑
y∈Fpe

ζ
Tre1(−yc)
p − 1

2pe
Gm

∑
y∈F∗

pe

ζ
Tre1(−yc)
p ,

if s is even.

=


q

2pe −
1
2 , if s is odd and c = 0,

q
2pe −

1
2pe ηe(−c)GmGe, if s is odd and c 6= 0,

q
2pe −

1
2 −

1
2peGm(pe − 1), if s is even and c = 0,

q
2pe + 1

2peGm, if s is even and c 6= 0.

Then, the desired results follow from Lemma 1. �

Remark 5. For each c ∈ Fpe , let Mc = {x ∈ F∗q : ηm(x) = 1 and Trme (x−1) =

c}, then |Mc| can be determined, since |Mc| + |Mc| = pm−e − 1 if c = 0 and
|Mc|+ |Mc| = pm−e if c 6= 0.

Remark 6. If c = 0, m = 2e and e is odd, then by Lemma 4 and Remark 5, we
have |M0| = |{x ∈ F∗q : ηm(x) = −1 and Trme (x−1) = 0}| = 1

2 (1−(−1)m)(pe−
1), and so

|M0| =
{
pe − 1, p ≡ 1 mod 4,
0, p ≡ 3 mod 4,

|M0| =
{

0, p ≡ 1 mod 4,
pe − 1, p ≡ 3 mod 4.

Hence, {x ∈ F∗q : Trme (x−1) = 0} is the set of non-square numbers when
p ≡ 1 mod 4 and square numbers when p ≡ 3 mod 4 in F∗q . It follows that

ηm(x) = (−1)
p+1
2 for any non-zero element satisfying Trme (x−1) = 0.

Remark 7. For each c ∈ Fpe and a ∈ F∗q , let M(c,a) = {x ∈ F∗q : ηm(x) =

−1 and Trme (ax−1) = c}. From Lemma 4, we have

|M(c,a)| =
{
|Mc|, if a is square number,
|Mc|, if a is non-square number.

3. Complete weight enumerators of CDa

It is well known that [8]

(6) Na = |{x ∈ Fq : Trme (x) = a, a ∈ Fpe}| = pm−e.
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Thus, the length na of the code CDa (a ∈ Fpe) satisfies

(7) na =

{
pm−e − 1, if a = 0,
pm−e, if a 6= 0.

By (4) and Lemma 3, for b ∈ F∗q , we have

n(b,a)(ρ) = p−e−1
∑
x∈Fq

 ∑
y∈Fp

ζ
y(Trm1 (bx2)−ρ)
p

 ∑
z∈Fpe

ζ
Tre1(z(Tr

m
e (x)−a))

p


= p−e−1

∑
x∈Fq

∑
z∈Fpe

ζ
Tre1(z(Tr

m
e (x)−a))

p

+ p−e−1
∑
y∈F∗p

∑
z∈Fpe

ζ
Tre1(−za)−yρ
p

∑
x∈Fq

ζ
Trm1 (byx2+zx)
p

= pm−e−1 + p−e−1
∑
y∈F∗p

∑
z∈Fpe

ζ
Tre1(−za)−yρ
p

∑
x∈Fq

ζ
Trm1 (byx2+zx)
p

= pm−e−1 + p−e−1
∑
y∈F∗p

∑
z∈Fpe

ζ
Tre1(−za)−yρ
p ζ

Trm1 (−z2(4by)−1)
p ηm(by)Gm

= pm−e−1 + p−e−1ηm(b)Gm

×
∑
y∈F∗p

ηm(y)ζ−yρp

∑
z∈Fpe

ζ
Tre1(−4−1y−1Trme (b−1)z2−az)
p

=



pm−e−1 + p−e−1ηm(b)Gm
∑
y∈F∗p

ηm(y)ζ−yρp

∑
z∈Fpe

ζ
Tre1(−az)
p ,

if Trme (b−1) = 0,

pm−e−1 + p−e−1ηm(b)GmGe

×
∑
y∈F∗p

ηm(y)ζ
y(Tre1(a

2(Trme (b−1))−1)−ρ)
p ηe(−y−1Trme (b−1)),

if Trme (b−1) 6= 0.

(8)

In the sequel, we will divide our analysis into two cases according to whether
a = 0 or not.

3.1. a = 0.

From (8), Lemmas 1 and 2, we get

n(b,0)(ρ) =



pm−e−1 + p−1ηm(b)Gm
∑
y∈F∗p

ηm(y)ζ−yρp ,

if Trme (b−1) = 0,

pm−e−1 + p−e−1ηm(b)ηe(−Trme (b−1))GmGe
∑
y∈F∗p

ηm(y)ηe(y
−1)ζ−yρp ,

if Trme (b−1) 6= 0.
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=



pm−e−1 + p−1ηm(b)η1(−ρ)Gm
∑
y∈F∗p

η1(−yρ)ζ−yρp ,

if m is odd and Trme (b−1) = 0,

pm−e−1 + p−e−1ηm(b)ηe(−Trme (b−1))GmGe
∑
y∈F∗p

ζ−yρp ,

if m is odd and Trme (b−1) 6= 0,

pm−e−1 + p−1ηm(b)Gm
∑
y∈F∗p

ζ−yρp ,

if m is even and Trme (b−1) = 0,

pm−e−1 + p−e−1ηm(b)ηe(−Trme (b−1))GmGe
∑
y∈F∗p

ηe(y
−1)ζ−yρp ,

if m is even and Trme (b−1) 6= 0.

=



pm−e−1 + p−1ηm(b)η1(−ρ)GmG1,

if m is odd and Trme (b−1) = 0,

pm−e−1 − p−e−1ηm(b)ηe(−Trme (b−1))GmGe,

if m is odd and Trme (b−1) 6= 0,

pm−e−1 − p−1ηm(b)Gm,

if m is even and Trme (b−1) = 0,

pm−e−1 + p−e−1ηm(b)ηe(Tr
m
e (b−1))η1(ρ)GmGe

∑
y∈F∗p

η1(−yρ)ζ−yρp ,

if m is even, e is odd and Trme (b−1) 6= 0,

pm−e−1 + p−e−1ηm(b)ηe(Tr
m
e (b−1))GmGe

∑
y∈F∗p

ζ−yρp ,

if m is even, e is even and Trme (b−1) 6= 0.

=



pm−e−1 + p−1ηm(b)η1(−ρ)GmG1,

if m is odd and Trme (b−1) = 0,

pm−e−1 − p−e−1ηm(b)ηe(−Trme (b−1))GmGe,

if m is odd and Trme (b−1) 6= 0,

pm−e−1 − p−1ηm(b)Gm,

if m is even and Trme (b−1) = 0,

pm−e−1 + p−e−1ηm(b)ηe(Tr
m
e (b−1))η1(ρ)GmGeG1,

if m is even, e is odd and Trme (b−1) 6= 0,

pm−e−1 − p−e−1ηm(b)ηe(Tr
m
e (b−1))GmGe,

if m is even, e is even and Trme (b−1) 6= 0.
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=



pm−e−1 + (−1)
p−1
2 (−1)m+1ηm(b)η1(ρ)p

m−1
2 ,

if m is odd and Trme (b−1) = 0,

pm−e−1 − (−1)
p−1
2 (−1)m+eηm(b)ηe(Tr

m
e (b−1))p

m−e−2
2 ,

if m is odd and Trme (b−1) 6= 0,

pm−e−1 − (−1)mηm(b)p
m−2

2 ,

if m is even and Trme (b−1) = 0,

pm−e−1 + (−1)m+e+1ηm(b)ηe(Tr
m
e (b−1))η1(ρ)p

m−e−1
2 ,

if m is even, e is odd and Trme (b−1) 6= 0,

pm−e−1 − (−1)m+eηm(b)ηe(Tr
m
e (b−1))p

m−e−2
2 ,

if m is even, e is even and Trme (b−1) 6= 0.

(9)

Lemma 8. Let k ∈ {−1, 1}, denote

Tk = {x ∈ F∗q : ηm(x)ηe(Tr
m
e (x−1)) = k and Trme (x−1) 6= 0}.

Then

|Tk| =

{
1
2 (pe − 1)(pm−e + (−1)

(p−1)e
2 (−1)m+ekp

m−e
2 ), if s is odd,

1
2 (pe − 1)pm−e, if s is even.

Proof. Notice that

|T1| = |{x ∈ F∗q : Trme (x−1) 6= 0}| − |T−1| = (pe − 1)pm−e − |T−1|.

Thus, we only focus on |T−1|.
For i, j ∈ {−1, 1}, define

Ni,j = {x ∈ F∗q : ηm(x) = i, ηe(Tr
m
e (x−1)) = j and Trme (x−1) 6= 0}.

Let y = Trme (x−1), from Lemma 4 and Remark 5, we have

|Ni,j | = |{x ∈ F∗q : ηm(x) = i, ηe(y) = j and y 6= 0}|
= |{x ∈ F∗q : ηm(x) = i and Trme (x−1) = y 6= 0}||{y ∈ F∗pe : ηe(y) = j}|

=

{
1
4 (pm−e + (−1)

(p−1)e
2 (−1)m+eijp

m−e
2 )(pe − 1), if s is odd,

1
4 (pm−e − (−1)mip

m−2e
2 )(pe − 1), if s is even.

Then,

|T−1| = |N−1,1|+ |N1,−1|

=

{
1
2 (pe − 1)(pm−e − (−1)

(p−1)e
2 (−1)m+ep

m−e
2 ), if s is odd,

1
2 (pe − 1)pm−e, if s is even.

This completes the proof. �

Our main result for a = 0 is:
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Table 1. The corresponding code CD0
in Theorem 9, when e

is odd and s is odd.

n(b,0)(0) n(b,0)(ρ)(ρ 6= 0) Frequency

pm−e−1 − 1 pm−e−1 − η1(ρ)p
m−1

2
1
2 (pm−e − 1)

pm−e−1 − 1 pm−e−1 + η1(ρ)p
m−1

2
1
2 (pm−e − 1)

pm−e−1 + (p− 1)p
m−e−2

2 − 1 pm−e−1 − pm−e−2
2

1
2 (pe − 1)(pm−e + p

m−e
2 )

pm−e−1 − (p− 1)p
m−e−2

2 − 1 pm−e−1 + p
m−e−2

2
1
2 (pe − 1)(pm−e − pm−e2 )

pm−e − 1 0 1

Table 2. The corresponding code CD0
in Theorem 9, when e

is odd and s(> 2) is even.

n(b,0)(0) n(b,0)(ρ)(ρ 6= 0) Frequency

pm−e−1 − 1 pm−e−1 − η1(ρ)p
m−e−1

2
1
2 (pe − 1)pm−e

pm−e−1 − 1 pm−e−1 + η1(ρ)p
m−e−1

2
1
2 (pe − 1)pm−e

pm−e−1 + (p− 1)p
m−2

2 − 1 pm−e−1 − pm−2
2

1
2 (p

m
2 − 1)(p

m−2e
2 + 1)

pm−e−1 − (p− 1)p
m−2

2 − 1 pm−e−1 + p
m−2

2
1
2 (p

m
2 + 1)(p

m−2e
2 − 1)

pm−e − 1 0 1

Theorem 9. The code CD0
is a [pm−e−1,m] linear code except for s = 2, which

is a [pe− 1, e] linear code. Their complete weight enumerators are described as
follow:

(i) If e is odd and s is odd, then the complete weight enumerator of the code
CD0

is described as in Table 1;
(ii) If e is odd and s is even, then the complete weight enumerator of the code
CD0

is described as in Table 2 when s > 2 and as in Table 3 when s = 2;
(iii) If e is even and s is odd, then the complete weight enumerator of the code

CD0 is described as in Table 4;
(iv) If e is even and s is even, then the complete weight enumerator of the

code CD0
is described as in Table 5 when s > 2 and as in Table 6 when

s = 2.

Proof. (i) If e is odd and s is odd, then m is odd. To obtain the complete
weight enumerators in this case, we give a partition of F∗q as follows

F∗q = M0 ∪M0 ∪ T−1 ∪ T1.
Note that from (9) the elements in the same part of the partition correspond

to the codewords with the same coordinate symbol distribution, and the con-
verse is also right. Thus, it suffices to calculate n(b,0)(ρ) with 0 ≤ ρ ≤ p− 1 for
the elements b in each part of the partition, and then we determine the size of
each part of the partition.
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For ρ 6= 0, we get by using (9) that

n(b,0)(ρ) = pm−e−1 − (−1)
p−1
2 (−1)m+1η1(ρ)p

m−1
2 and

n(b,0)(ρ) = pm−e−1 + (−1)
p−1
2 (−1)m+ep

m−e−2
2

for b ∈M0 and b ∈ T−1, respectively.
Similarly, for the cases b ∈ M0 and b ∈ T1, we may get n(b,0)(ρ) by (9).

Since n(b,0)(0) = n0 −
∑p−1
ρ=1 n(b,0)(ρ) (see (7)), we can also get n(b,0)(0) in all

the cases.
Finally, Lemmas 4 and 8 yield |M0|, |M0|, |T−1| and |T1|, that is, the number

of the codewords with the same coordinate symbols distribution corresponding
to each part of the partition.

Since, for any b ∈ F∗q , the codeword cb ∈ CD0
obtained by taking x as b in

(1) is non-zero, we obtain dim(CD0
) = m over Fp, that is, CD0

is a [pm−e−1,m]
linear code.

We list the complete weight enumerator in Table 1. Note that each row in
Table 1 stands for a kind of coordinate symbols distribution in the code CD0 ,
and the last column stands for the number of the codewords with each kind of
coordinate symbols distribution. Other tables in the paper will preserve similar
meaning as Table 1.

(ii) For the case e is odd and s is even, we can obtain the complete weight
enumerators listed in Table 2 by using m being even and similar arguments as
in (i). It needs to point out that the case s = 2 should be separated from Table
2 because of the dimension variation of CD0

.
If s = 2, then m = se = 2e. For ρ 6= 0, we may get from Remark 6 and (9)

that

n(b,0)(ρ) = pe−1 + (−1)2e(−1)
p−1
2 pe−1 = 0 whenever Tr2ee (b−1) = 0.

That is, wt(cb) = 0 whenever Tr2ee (b−1) = 0. Thus, there are pe elements b
in Fq such that wt(cb) = 0 (wt(·) stands for Hamming weight), thus, the code
CD0 only has p2e/pe = pe different codewords and is a [pe − 1, e] code. We
get the complete weight enumerators with respect to m = se = 2e in Table 3
which can be obtained by modifying Table 2. Note from Table 3 that all the
non-zero codewords have the same Hamming weight, and thus the code CD0

with respect to m = 2e is constant-weight.
(iii) If e is even and s is odd, then m is even. We may obtain the complete

weight enumerators in Table 4 by using similar arguments as in (i).
(iv) If e is even and s is even, then m is even. We get the results in Tables

5 and 6 for s > 2 and s = 2, respectively, by using similar arguments as in (ii).
This completes the proof. �

Example 10. Let (p,m, e, s) = (3, 3, 1, 3) and a = 0. Then by Theorem 9 and
Table 1, the code CD0

has parameters [8, 3, 4] and complete weight enumerator

w8
0 + 4w2

0w
6
2 + 4w2

0w
6
1 + 12w4

0w
2
1w

2
2 + 6w4

1w
4
2
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Table 3. The corresponding code CD0
in Theorem 9, when e

is odd and s = 2.

n(b,0)(0) n(b,0)(ρ)(ρ 6= 0) Frequency

pe−1 − 1 pe−1 − η1(ρ)p
e−1
2

1
2 (pe − 1)

pe−1 − 1 pe−1 + η1(ρ)p
e−1
2

1
2 (pe − 1)

pe − 1 0 1

Table 4. The corresponding code CD0
in Theorem 9, when e

is even and s is odd.

n(b,0)(0) n(b,0)(ρ)(ρ 6= 0) Frequency

pm−e−1 + (p− 1)p
m−2

2 − 1 pm−e−1 − pm−2
2

1
2 (pm−e − 1)

pm−e−1 − (p− 1)p
m−2

2 − 1 pm−e−1 + p
m−2

2
1
2 (pm−e − 1)

pm−e−1 + (p− 1)p
m−e−2

2 − 1 pm−e−1 − pm−e−2
2

1
2 (pe − 1)(pm−e + p

m−e
2 )

pm−e−1 − (p− 1)p
m−e−2

2 − 1 pm−e−1 + p
m−e−2

2
1
2 (pe − 1)(pm−e − pm−e2 )

pm−e − 1 0 1

Table 5. The corresponding code CD0
in Theorem 9, when e

is even and s(> 2) is even.

n(b,0)(0) n(b,0)(ρ)(ρ 6= 0) Frequency

pm−e−1 + (p− 1)p
m−2

2 − 1 pm−e−1 − pm−2
2

1
2 (p

m
2 − 1)(p

m−2e
2 + 1)

pm−e−1 − (p− 1)p
m−2

2 − 1 pm−e−1 + p
m−2

2
1
2 (p

m
2 + 1)(p

m−2e
2 − 1)

pm−e−1 + (p− 1)p
m−e−2

2 − 1 pm−e−1 − pm−e−2
2

1
2 (pe − 1)pm−e

pm−e−1 − (p− 1)p
m−e−2

2 − 1 pm−e−1 + p
m−e−2

2
1
2 (pe − 1)pm−e

pm−e − 1 0 1

Table 6. The corresponding code CD0 in Theorem 9, when e
is even and s = 2.

n(b,0)(0) n(b,0)(ρ)(ρ 6= 0) Frequency

pm−e−1 + (p− 1)p
m−e−2

2 − 1 pm−e−1 − pm−e−2
2

1
2 (pe − 1)

pm−e−1 − (p− 1)p
m−e−2

2 − 1 pm−e−1 + p
m−e−2

2
1
2 (pe − 1)

pm−e − 1 0 1

and is almost optimal. This code can be punctured into a shorter code (see
[10, Corollary 2.3]) with parameters [4, 3, 2] which is optimal.
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Example 11. Let (p,m, e, s) = (3, 6, 3, 2) and a = 0. Then by Theorem
9 and Table 3, the code CD0

has parameters [26, 3, 18] and complete weight
enumerator

w26
0 + 13w8

0w
6
1w

12
2 + 13w8

0w
12
1 w

6
2.

This code is optimal.

Example 12. Let (p,m, e, s) = (3, 4, 2, 2) and a = 0. Then by Theorem 9 and
Table 6, the code CD0

has parameters [8, 2, 4] and complete weight enumerator

w8
0 + 4w4

0w
2
1w

2
2 + 4w4

1w
4
2.

This code can be punctured into a shorter code (see [10, Corollary 2.3]) with
parameters [4, 2, 2] which is almost optimal.

3.2. a 6= 0.

Still from (8), Lemmas 1 and 2, we have

n(b,a)(ρ) =



pm−e−1, if Trme (b−1) = 0,
pm−e−1 + p−e−1ηm(b)ηe(−Trme (b−1))

GmGe
∑
y∈F∗p

ζ
y(Tre1(a

2(Trme (b−1))−1)−ρ)
p η1(y),

if e is odd, s is even and Trme (b−1) 6= 0,
pm−e−1 + p−e−1ηm(b)ηe(−Trme (b−1))

GmGe
∑
y∈F∗p

ζ
y(Tre1(a

2(Trme (b−1))−1)−ρ)
p ,

if e is even or s is odd and Trme (b−1) 6= 0.

=



pm−e−1, if Trme (b−1) = 0,

pm−e−1, if e is odd, s is even, Trme (b−1) 6=0 and Tre1(a2(Trme (b−1))−1)=ρ,

pm−e−1 + p−e−1ηm(b)ηe(−Trme (b−1))
η1(Tre1(a2(Trme (b−1))−1)− ρ)GmGeG1,

if e is odd, s is even, Trme (b−1) 6= 0 and Tre1(a2(Trme (b−1))−1) 6= ρ,

pm−e−1 + p−e−1(p− 1)ηm(b)ηe(−Trme (b−1))GmGe,
if e is even or s is odd, Trme (b−1) 6= 0 and Tre1(a2(Trme (b−1))−1) = ρ,

pm−e−1 − p−e−1ηm(b)ηe(−Trme (b−1))GmGe,

if e is even or s is odd Trme (b−1) 6= 0 and Tre1(a2(Trme (b−1))−1) 6= ρ.

=



pm−e−1, if Trme (b−1) = 0,

pm−e−1, if e is odd, s is even, Trme (b−1) 6=0 and Tre1(a2(Trme (b−1))−1)=ρ,

pm−e−1 + (−1)
p−1
2 (−1)m+e+1

ηm(b)ηe(Trme (b−1))η1(Tre1(a2(Trme (b−1))−1)− ρ)p
m−e−1

2 ,
if e is odd, s is even, Trme (b−1) 6= 0 and Tre1(a2(Trme (b−1))−1) 6= ρ,

pm−e−1 + (−1)
(p−1)e

2 (−1)m+eηm(b)ηe(Trme (b−1))(p− 1)p
m−e−2

2 ,
if e is even or s is odd, Trme (b−1) 6= 0 and Tre1(a2(Trme (b−1))−1) = ρ,

pm−e−1 − (−1)
(p−1)e

2 (−1)m+eηm(b)ηe(Trme (b−1))p
m−e−2

2 ,
if e is even or s is odd, Trme (b−1) 6= 0 and Tre1(a2(Trme (b−1))−1) 6= ρ.

(10)

Lemma 13. Let a ∈ F∗pe , γ ∈ Fp and k ∈ {−1, 1}, denote

Sk,γ = {x ∈ F∗q : ηm(x)ηe(Tr
m
e (x−1)) = k and Tre1(a2(Trme (x−1))−1) = γ}.
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Then, for e being odd and s being odd, we have

Sk,γ =

{
1
2p
e−1(pm−e + (−1)

p−1
2 (−1)m+ekp

m−e
2 ), if γ 6= 0,

1
2 (pe−1 − 1)(pm−e + (−1)

p−1
2 (−1)m+ekp

m−e
2 ), if γ = 0,

for e being odd and s being even, we have

Sk,γ =

{
1
2 (pm−1 − (−1)

p−1
2 (−1)m+e+1kη1(γ)p

m−e−1
2 ), if γ 6= 0,

1
2 (pm−1 − pm−e), if γ = 0,

for e being even and s being odd, we have

Sk,γ =

{
1
2p
e−1(pm−e − kpm−e2 ), if γ 6= 0,

1
2 (pe−1 − 1)(pm−e − kpm−e2 ), if γ = 0,

and for e being even and s being even, we have

Sk,γ =

{
1
2 (pm−1 − (−1)ekp

m−e−2
2 ), if γ 6= 0,

1
2 (pm−1 − pm−e + (−1)ek(p− 1)p

m−e−2
2 ), if γ = 0.

Proof. Let y = Trme (x−1). We only consider γ 6= 0 in the sequel. Observe that

|S1,γ | = |{x ∈ F∗q : Tre1(a2y−1) = γ 6= 0}| − |S−1,γ |
= |{x ∈ F∗q : Trme (x−1) = y 6= 0}||{y ∈ F∗pe : Tre1(a2y−1) = γ 6= 0}|
− |S−1,γ |

= pm−1 − |S−1,γ |.

Thus, we only focus on |S−1,γ |.
For i, j ∈ {−1, 1}, define

Ni,j,γ = {x ∈ F∗q : ηm(x) = i, ηe(Tr
m
e (x−1)) = j and

Tre1(a2(Trme (x−1))−1) = γ 6= 0}.
From Lemma 4 and Remark 5, we have

|Ni,j,γ | = |{x ∈ F∗q : ηm(x) = i, ηe(y) = j and Tre1(a2y−1) = γ 6= 0}|

= |{x ∈ F∗q : ηm(x) = i and Trme (x−1) = y 6= 0}|

|{y ∈ F∗pe : ηe(y) = j and Tre1(a2y−1) = γ 6= 0}|

= |{x ∈ F∗q : ηm(x) = i and Trme (x−1) = y 6= 0}|

|{y ∈ F∗pe : ηe(y) = j and Tre1(y−1) = γ 6= 0}|

=



1
4

(pm−e + (−1)
p−1
2 (−1)m+eijp

m−e
2 )(pe−1 + (−1)

p−1
2 (−1)e+1jη1(γ)p

e−1
2 ),

if e is odd and s is odd,
1
4

(pm−e − (−1)mip
m−2e

2 )(pe−1 + (−1)
p−1
2 (−1)e+1jη1(γ)p

e−1
2 ),

if e is odd and s is even,
1
4

(pm−e − ijp
m−e

2 )(pe−1 − (−1)ejp
e−2
2 ),

if e is even and s is odd,
1
4

(pm−e + ip
m−2e

2 )(pe−1 − (−1)ejp
e−2
2 ),

if e is even and s is even.



730 Y. LIU AND Z. LIU

Then,

|S−1,γ | = |N−1,1,γ |+ |N1,−1,γ |

=



1
2p
e−1(pm−e − (−1)

p−1
2 (−1)m+ep

m−e
2 ),

if e is odd and s is odd,
1
2 (pm−1 + (−1)

p−1
2 (−1)m+e+1η1(γ)p

m−e−1
2 ),

if e is odd and s is even,
1
2p
e−1(pm−e + p

m−e
2 ),

if e is even and s is odd,
1
2 (pm−1 + (−1)ep

m−e−2
2 ),

if e is even and s is even.

By the same method, we can also compute Sk,γ when γ = 0. This completes
the proof. �

Table 7. The corresponding code CDa in Theorem 14, when
s is odd.

n(b,a6=0)(0) n(b,a 6=0)(ρ)(ρ 6= 0) Frequency

pm−e−1 pm−e−1 pm−e − 1
pm−e 0 1

pm−e−1 − (p− 1)p
m−e−2

2 pm−e−1 + p
m−e−2

2
1
2 (pe−1 − 1)(pm−e − pm−e2 )

pm−e−1 + (p− 1)p
m−e−2

2 pm−e−1 − pm−e−2
2

1
2 (pe−1 − 1)(pm−e + p

m−e
2 )

n(b,a6=0)(ρ)(ρ = γ) n(b,a 6=0)(ρ)(ρ 6= γ) Frequency

pm−e−1 − (p− 1)p
m−e−2

2 pm−e−1 + p
m−e−2

2
1
2p
e−1(pm−e − pm−e2 )

pm−e−1 + (p− 1)p
m−e−2

2 pm−e−1 − pm−e−2
2

1
2p
e−1(pm−e + p

m−e
2 )

where γ runs though F∗p.

Our main result for a 6= 0 is:

Theorem 14. Let CDa be defined as previous and a 6= 0, Then, the code CDa
is a [pm−e,m] linear code and its the complete weight enumerator is described
as follow:

(i) If s is odd, then the complete weight enumerator of the code CDa is de-
scribed as in Table 7;

(ii) If s is even and e is odd, then the complete weight enumerator of the code
CDa is described as in Table 8;

(iii) If s is even and e is even, then the complete weight enumerator of the
code CDa is described as in Table 9.

Proof. (i) Assume s is odd. Then, we will state that the complete weight
enumerators are described as in Table 7 no matter whether e is odd or even.
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Table 8. The corresponding code CDa in Theorem 14, when
s is even and e is odd.

n(b,a6=0)(0) n(b,a6=0)(ρ)(ρ 6= 0) Frequency

pm−e−1 pm−e−1 pm−e − 1
pm−e 0 1

pm−e−1 pm−e−1 − η1(ρ)p
m−e−1

2
1
2 (pm−1 − pm−e)

pm−e−1 pm−e−1 + η1(ρ)p
m−e−1

2
1
2 (pm−1 − pm−e)

n(b,a6=0)(ρ)(ρ = γ) n(b,a6=0)(ρ)(ρ 6= γ) Frequency

pm−e−1 pm−e−1 − η1(γ − ρ)p
m−e−1

2
1
2 (pm−1 + η1(γ)p

m−e−1
2 )

pm−e−1 pm−e−1 + η1(γ − ρ)p
m−e−1

2
1
2 (pm−1 − η1(γ)p

m−e−1
2 )

where γ runs though F∗p.

Table 9. The corresponding code CDa in Theorem 14, when
s is even and e is even.

n(b,a6=0)(0) n(b,a6=0)(ρ)(ρ 6= 0) Frequency

pm−e−1 pm−e−1 pm−e − 1
pm−e 0 1

pm−e−1 − (p− 1)p
m−e−2

2 pm−e−1 + p
m−e−2

2
1
2 (pm−1 − pm−e + (p− 1)p

m−e−2
2 )

pm−e−1 + (p− 1)p
m−e−2

2 pm−e−1 − pm−e−2
2

1
2 (pm−1 − pm−e − (p− 1)p

m−e−2
2 )

n(b,a6=0)(ρ)(ρ = γ) n(b,a6=0)(ρ)(ρ 6= γ) Frequency

pm−e−1 − (p− 1)p
m−e−2

2 pm−e−1 + p
m−e−2

2
1
2 (pm−1 − pm−e−2

2 )

pm−e−1 + (p− 1)p
m−e−2

2 pm−e−1 − pm−e−2
2

1
2 (pm−1 + p

m−e−2
2 )

where γ runs though F∗p.

We only consider the case e being odd, and for e being even, similar arguments
can be carried out.

When both s and e are odd, due to (10) we get a partition of the set F∗q as
follows:

F∗q = {b ∈ F∗q : Trme (b−1) = 0} ∪ {b ∈ F∗q : Trme (b−1) 6= 0}
= {b ∈ F∗q : Trme (b−1) = 0} ∪ (∪k,γSk,γ),

where k, γ and Sk,γ are described as in Lemma 13.
Observe that from (10) the elements in the same part of the partition of

F∗q correspond to the codewords with the same coordinate symbol distribution,
and the converse is also right. Thus, it suffices to calculate n(b,a)(ρ) with
0 ≤ ρ ≤ p − 1 for the elements b in each part of the partition, and then we
determine the size of each part of the partition.
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As a first step, since the codeword cb ∈ CDa is non-zero for any b ∈ F∗q by

(10), we obtain dim(CDa) = m. that is, CDa is a [pm−e,m] linear code.
Then, consider the part of the partition {b ∈ F∗q : Trme (b−1) = 0}. For

each element b of this part, it holds n(b,a)(ρ) = pm−e−1 for any ρ 6= 0 by (10).
Furthermore, the number of codewords with the above property is equal to

|{b ∈ F∗q : Trme (b−1) = 0}| = pm−e − 1.

Now, let us consider Sk,γ , if γ = 0 and b ∈ Sk,γ = Sk,0, then we have

n(b,a)(ρ) = pm−e−1−(−1)
p−1
2 (−1)m+ekp

m−e−2
2 for any ρ 6= 0 by (10). If γρ 6= 0

and ρ 6= γ, we have n(b,a)(ρ) = pm−e−1 − (−1)
p−1
2 (−1)m+ekp

m−e−2
2 by (10),

and if γρ 6= 0 and ρ = γ, we have n(b,a)(ρ) = pm−e−1 + (−1)
p−1
2 (−1)m+ek(p−

1)p
m−e−2

2 by (10).

Since n(b,a)(0) = pm−e −
∑p−1
ρ=1 n(b,a)(ρ), we get n(b,a)(0) in the above cases.

Finally, by using Lemma 13, the size |Sk,γ | of each part Sk,γ can be obtained,
and we list the complete weight enumerators of the code CDa in Table 7.

Similar arguments as in (i) yield the results in (ii) and (iii), which are listed
in Tables 8 and 9, respectively, and the details are omitted.

This completes the proof. �

Remark 15. It is observed that, when a 6= 0, the complete weight enumerator
of the code CDa are independent of the choice of a.

Example 16. Let (p,m, e, s) = (3, 3, 1, 3) and a 6= 0. Then by Theorem 14 and
Table 7, the code CDa has parameters [9, 3, 5] and complete weight enumerators

w9
0 + 8w3

0w
3
1w

3
2 + 3w4

0w
1
1w

4
2 + 6w2

0w
5
1w

2
2 + 3w4

0w
4
1w

1
2 + 6w2

0w
2
1w

5
2.

This code is almost optimal.

Example 17. Let (p,m, e, s) = (3, 6, 3, 2) and a 6= 0. Then by Theorem
14 and Table 8, the code CDa has parameters [27, 6, 15] and complete weight
enumerator

w27
0 + 26w9

0w
9
1w

9
2 + 108w9

0w
6
1w

12
2 + 108w9

0w
12
1 w

6
2 + 123w6

0w
9
1w

12
2

+ 120w12
0 w

9
1w

6
2 + 120w12

0 w
6
1w

9
2 + 123w6

0w
12
1 w

9
2.

This code is optimal.

Example 18. Let (p,m, e, s) = (3, 4, 2, 2) and a 6= 0. Then by Theorem 14 and
Table 9, the code CDa has parameters [9, 4, 4] and complete weight enumerator

w9
0 + 8w3

0w
3
1w

3
2 + 10w1

0w
4
1w

4
2 + 8w5

0w
2
1w

2
2 + 13w4

0w
1
1w

4
2

+ 14w2
0w

5
1w

2
2 + 13w4

0w
4
1w

1
2 + 14w2

0w
2
1w

5
2.

This code is almost optimal.

Remark 19. The defining set in this paper can be generally defined by Da(α, β)
= {x ∈ F∗q : Trme (αx+ β) = a}, where a ∈ Fpe , α ∈ F∗q and β ∈ Fq.
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If (α, β) = (α, 0), then by using similar proof as in this paper we can obtain
that the code CDa(α,0) has the same complete weight enumerators as CDa . To get

the result, we need the following modifications: the parameter b−1 is replaced
by α2b−1 in (8), (9) and (10), and x−1 is replaced by α2x−1 in Lemmas 4, 8
and 13 due to Remark 7.

If (α, β) = (α, β 6= 0), then we may rewrite the defining set as {x ∈ F∗q :
Trme (αx) = a − Trme (β)}, and then the complete weight enumerators of the
code CDa(α,β) can be determined from CDa(α,0). The details are omitted.

4. Conclusion

In this paper, we constructed several classes of linear codes with a few
weights by choosing the defining set properly, and then we determined the
complete weight enumerators of these classes of codes.
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