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COMPLETE WEIGHT ENUMERATORS OF SOME CLASSES
OF LINEAR CODES WITH A FEW WEIGHTS

YIWEI L1u AND ZIHUI LIU

ABSTRACT. By choosing defining set properly, several classes of linear
codes with a few weights over the finite field F, are constructed for an
odd prime p, and the complete weight enumerators of these classes of
codes are determined.

1. Introduction

Recently, by using a defining set, linear codes with a few weights have been
extensively constructed and studied due to their applications to secret sharing,
authentication codes, association schemes and strongly regular graphs [4], [5],
[9]. The paper is to give further new results along this line, and we will con-
struct several classes of codes with a few weights by choosing the defining set
accordingly, and then we will determine the complete weight enumerators of
these classes of codes.

Let p be an odd prime, and let IF, be the finite field with ¢ = p™ elements
throughout this paper. Assume m = es, m, e and s > 2 are positive integers.
A p-ary [n, k, d] linear code C is defined as a k-dimensional subspace of F}} with
minimum Hamming distance d. The code C is called optimal if no [n, k,d + 1]
code exists, and is called almost optimal if the code [n, k,d + 1] is optimal [6,
Chapter 2].

Denote F, = {wq,wn,...,wp_1} the finite field with p elements, where
w; = i for 0 < i < p—1, and denote F; = F,\{0}. For a codeword
c=(co,C1,---,cn-1) € Fp, define

wle] = witw - wyry,

where k; is the number of components of ¢ equal to w;, and Z?;é k; =n. For
any (ko, ..., kp—1) with Y2770 k; = n, define

k,_
Oty s = | € C 2 wfe] = wfowht w1},
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718 Y. LIU AND Z. LIU
Then, the complete weight enumerator (CWE) of C is defined as

CWE(C) = Zw[c] = Z Ot e, WHOWE - -wﬁf‘ll.

ceC ekO""“p—l#O

Thus, the key to determining CWE(C) of a linear code C is determining those
eko.“kp_l such that Gko.“kp_l 7£ 0.

The complete weight enumerator of C could be helpful in soft decision de-
coding [2], and it can also be applied to the calculation of the deception prob-
abilities of certain authentication codes [4]. Many new results are dedicated
to determining the complete weight enumerators of codes constructed by using
defining set [1], [11].

Let T'r]* denote the trace function from Fy onto Fpe, namely, Tr(x)

?lg_l 2P, Assume f is a function over F,. For any set D = {d1,ds,...,d
C F}, we may construct a linear code of length n over F, as follows

Co = {(Tr"(xf(dr)), Tr"(xf(d2)), ..., Tri* (2 f(dn))) : © € Fy},

and call D the defining set of Cp [3].

By choosing the defining set properly, many classes of codes with a few
weights have been obtained [3], [5], [7], [9], [10], [11]. It is interesting that
in [11] the complete weight enumerators of Cp are determined, where D and
Cp are given as follows, respectively,

n}

D ={xeF,:Tr{"(z) =0} = {d1,da, ..., dn},

) Cp = {(Tr"(xd?), Tr1"(xd3), ..., Tri(zd2)) : x € F,}.

In this paper, we will determine the complete weight enumerators of the
code Cp in (1) by replacing D by D,, where

Dy ={z €T, :Tr]"(z) = a} = {d1,da, ..., dn},

and a is any element of Fpe (recall m = es). Obviously, the result in [11] can
be considered as a special of this paper by taking e =1 and a = 0.
Let p € IFp, define

Npa)(p) = {z € Fg : Tr*(x) = a and Tr{"’(bxz) = p}.

Then, for any b € I}, the codeword ¢, € Cp obtained by taking z as b in (1)
satisfies

k?o k}l k?pfl

(2) wlep] = wywy cwpt where k, = n q) (p)-

To calculate k, = n q)(p) for 0 < p < p — 1, it suffices to get each k, for

p > 0 since Zi;(l) k, = Zﬁ;l N(b,a)(p) = n. Thus, we will focus on determining

N(p,a)(p) for p # 0 in the sequel.
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2. Preliminaries

We present some results of group characters, exponential sums, and Gauss
sums for later use, please see [8] for the details. An additive character x of Fy
is a function from F, to the set of complex numbers of absolute value 1 such
that x(x +y) = x(z)x(y) for all z,y € F,. For each b € F,, the function

(3) X () =m0 Vo e F,

2mV/=T .
defines an additive character of F,, where (, = e~ » , and every additive char-

acter of F, can be obtained in this way. When b = 0, the character XO(z) =1
for all z € IF; and is called the trivial character of IF;. All other additive char-
acter are called non-trivial. When b = 1, the character x(!) in (3) is called the
canonical additive character of F,. It is obvious that x®)(z) = (V) (bz).

The orthogonal property of additive characters of I, which can be found in
Theorem 5.4 in [8] is given by

| q, if x is trivial,
(@ > ={ &

if x is non-trivial.
z€F,

Characters of the multiplicative group ¥y of IF, are called multiplicative char-
acter of Fy. By Theorem 5.8 in [8], for each j =0,1,...,¢ — 2, the function v,
with _

Vi (g*) = VLR (a1 for k=0,1,...,q—2
defines a multiplicative character of F,, where g is a generator of F;. For
J = (g —1)/2, we have the quadratic character 1 = 14_1)/2 defined by
~1, if21k
k\ 9 )
g ){ 1, if2]k

In the sequel, we assume that 7(0) = 0.
We define the quadratic Gauss sum G(7, x) over F, by

(5) G(n,x) = > nlx)x(@).
;cE]F;

In this paper, we denote 7, and x.,, as the quadratic character and the
canonical additive character over Fpm, respectively. Let G, denote G(1m, Xm)-
Then the explicit values of quadratic Gauss sums G, are given as follows.

Lemma 1 ([8], Theorem 5.15). Let the symbols be the same as previous, g =
p™. Then

Gm = (—1)m\/§7
(=12%m
where (—=1),, = (=1)m=Dy/=1 7

Lemma 2. Let the symbols be the same as before. Then

(1) if s is even, then Ny (y) =1 for each y € Fe;
(ii) if s is odd, then 1y (y) = ne(y) for each y € Fj..



720 Y. LIU AND Z. LIU

Proof. Let g be a generator of F... Notice that every y € . can be expressed
as gig%llj, where 0 < j < p® — 2. Since p is odd, then
pm—1
pe—1
Hence, every element y € F. is a square in F},. when s is an even positive

integer, and 7,,(y) = n.(y) for each y € Fy.. when s is odd. This completes
the proof. O

:1+pe+...+pe(571)55 mod 2.

Lemma 3 ([8], Theorem 5.33). Let x be a non-trivial additive character of Fy,
q=p™, and let f(x) = asz® + a1x + ag € F,[x] with ay # 0. Then

D x(f(@) = x (a0 — af(4az) ") nm(a2) G (1, X)-

z€lFy
Lemma 4. For each c € Fpe, let

M. ={x¢€ Fy i nm(z) = —1 and Tr;"(x_l) =c}.

Then
qQ_pIie, if s is odd and ¢ = 0,
M, = 2L — L (1) (~Drene(0p™T°, if s is odd and ¢ # 0,
‘ q2_pp — 3 (p —1)p™r, if s is even and ¢ = 0,
+ 5(=Dmp =z, if s is even and ¢ # 0.

Proof. By (4), (5) and Lemma 2 for any ¢ € Fp,c, we have

1 Tri(y(Tr’(z)—c
|M,| = 5 Z (1= np(2)) Z o 1(y(Tr (z)—c))
P TEFY yEFye
_ Trl(y(TT”'"(x) c))
2p QZEF* yEFpe
Tri(y(Tr (z)—c))
(@) Y G
zeF* yEF e
1 Tri(y(Tr (z)—c)) Tri(—ye)
s DI > 6
2]7 zEF, yEFe YyEFye
T (T ()-))
(@) D G
a:GF* yEF;e

_ q— Z CTTI( yc)

yEF e
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Trl c) Tr" (yz
N )T

yEF* TEFy
Trl( ye) TT1( yc)
= pe
yEF yeF*
T 1 Treé(—
e e D) ene(_C)Gm Z Ne(—yc)Cp il yc)’
p yGF P yEF:e
if s is odd,
- Trl( ye) G Tri( yc)
pe 2p Y G
yEFpe ’UEF*
if s is even.
2;1,6 -3 if s is odd and ¢ =0,
_ e — ﬁne(—C)GmGe, if s is odd and ¢ # 0,
zge - % — 2;5 Gm(p® —1), if siseven and ¢ =0,
#—I—#Gm, if s is even and ¢ # 0.
Then, the desired results follow from Lemma, 1. ([

Remark 5. For each ¢ € Fpe, let M, = {x € F} : ny(2) = 1 and Tr]"(z7') =
ch, thenﬂ/m can be determined, since |M,| + |[M.| = p™~¢ — 1 if ¢ = 0 and
|Mc| + |M,| =p™cif c#£0.

Remark 6. If c =0, m = 2e and e is odd, then by Lemma 4 and Remark 5, we
have |My| = |{z € Fy nm(z) = =1 and Tr7(z~') =0} = %(17(71),,1)(1)6—
1), and so

[ p°—=1, p=1mod4, — | 0, p=1mod 4,
|MO|_{O, p = 3 mod 4, |Mo| = p°—1, p=3mod 4.

Hence, {zr € F} : Trm(z=1) = 0} is the set of non-square numbers when
p = 1 mod 4 and square numbers when p = 3 mod 4 in F;. It follows that

N (z) = (fl)pT+1 for any non-zero element satisfying Tr™(z~1) = 0.

Remark 7. For each ¢ € Fpe and a € Fy, let M. o) = {z € F; : n(z) =
—1and Tr™(ax~') = c}. From Lemma 4, we have

M, | = \%L if a is square number,
(e,a) |M.|, if a is non-square number.
3. Complete weight enumerators of Cp,,

It is well known that [8]
(6) Na:|{l'€]Fq ITTZl(ﬁ):a7a€Fpe}|:pmfe'
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Thus, the length n, of the code Cp, (a € F,e) satisfies

[ pre—1, ifa=0,
(7) fta = { pme, if @ 0.

By (4) and Lemma 3, for b € F;, we have

n(b.a) (P) —pe! Z (Z Cg(Tr{”(bzz)—p)> ( Z CPTTT(Z(TTZ,"(z)—a)))

x€Fq \yeF, 2€F,e
_—e—1 Tri(2(Tr" (z)—a))
=p E E & ‘

z€Fg z€EF e

3 2
—e—1 Tr{(—za)—yp Tri* (byz®+zx)
LD DD DR > G
yEF‘; z€Fpe z€Fy
2
_ m—e—1 —e—1 Tri(—za)—yp Tr" (byz“+zx)
=p +p > > b > G
yGF; Zerﬁ z€Fy

o o Tré(— _ Trm(— 2 4b -1
— pm e—1 +p e—1 Z Z Cp r{(—za) yPCp ri" (=27 (4by) )nm(by)Gm
yeFy z€F e

=p" T 4 T ()G
_ Tré(—4~ Yy~ e (b~ 22 —az
x Z ﬁm(y)Cp yp Z Cp 1( Y e ( ) )

yeFy zEF e
m—e— —e— — Tr{(—az
P i (0)Gm S mmGY S G,
yeFl’j z€F e
if Trm(b=1) =0,
®) =P 4 pT T I ()G Ge
Tré(a2(Tr™ (b= 1)~ 1)— _ _
x 37 () T ATy (b71),
yEF;
if Trm(b™1) # 0.

In the sequel, we will divide our analysis into two cases according to whether
a = 0 or not.

3.1. a=0.

From (8), Lemmas 1 and 2, we get

P p e (0)Gm Y ()G P,
yeFy

it Tr(b71) =0,

P T g 0) e (T (07 ))GmGe D im @) (y™ )G, P
yEF)

n,0)(p) =

if Trm(b™1) # 0.
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P T A i (O (=p) G D m(—yp)¢, Y,
yEFy

if m is odd and Tr™ (b~ 1) =0,

P T 4+ p T T i (D) (T (b7 1) GG Z G U7,
yeFy

if m is odd and Tr7 (b~ 1) # 0,
pmTeT! +p_lnm(b)Gm Z Cp_yp7

yEFy
if m is even and Tr™(b™1) = 0,
P T A T i (Dne (=TT (b)) GmGe D me(y™ G, Y,
yeFy
if m is even and Tr™(b~1) # 0.
P 4 pT (D) (—p)Gm G,
if m is odd and Tr™(b~1) = 0,
P = p T T () e (T (b7 ) G Ge,
if m is odd and Tr™ (b~ 1) # 0,
P = p T i (0) G,

if m is even and Tr™(b™1) = 0,

P T T I (O (T (07 ) ()G Ge Y m(—yp)Gy Y7,
yery

if m is even, e is odd and Tr™(b~1) # 0,

P 4 p T T i (D)ne (Tr (b7 1) G Ge Z G e,
yEF]

if m is even, e is even and Tr™ (b~ 1) # 0.

P T i (D) (—p) GG,

if m is odd and Tr™ (b~ 1) = 0,

Ifnie*l _pieilnm(b)UE(_T"'én(bil))GmG&

if m is odd and Tr™ (b~ 1) # 0,

N e

if m is even and Tr™(b~1) = 0,

P T T () e (T (07 1)) m (p) Gm Ge G,
if m is even, e is odd and Trgn(b_l) #0,

P = T () ne (T (07 1)) GmGe,

if m is even, e is even and Tr™ (b~ 1) # 0.
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m—1
PP 4 (1) T (<D (O)m (0T
if m is odd and Tr7(b~1) = 0,

m—e—2

PP (1) T (<D (B)ne (TP (b7 ))p T
if m is odd and Tr™ (b~ 1) # 0,

m—2
L e I (O

if m is even and Tr™(b™1) = 0,

) =

—e—1

P (D met 1 (O)ne(Tr (0 D)m(p)p™ 2
if m is even, e is odd and Tr™(b~1) # 0,

P (<L) e (D) (T (6~ ))p™ 5

if m is even, e is even and Tr7 (b~ 1) # 0.

Lemma 8. Let k € {—1,1}, denote
Ty ={x €F;: N ()1 (Tr™ (2™ 1)) = k and Tr™(x1) # 0}.
Then
|HF{§W—MW*+PN”W4MMMJLUmwm
(pe —1)pme, if s is even.
Proof. Notice that
11| = [{z € Fy: Tr(a™") # 0} = |Ta] = (p° = 1)p™ ¢ = |T-a.

Thus, we only focus on |T_1].
For i,j € {—1,1}, define

N, j={z¢€ FZ S () =1, ne(Tr;”(afl)) =7 and Trg‘(xfl) # 0}.
Let y = Tr™(z~ 1), from Lemma 4 and Remark 5, we have
|Nijl = {z € Fg : nm(x) =i, ne(y) = j and y # 0}|
=z € Fy inm(a) =i and Tr(z™") =y # 0}|{y € F. :ne(y) = 5}
{ Lpm=e 4 (1) "2 (= 1)preijp ") (p° — 1), if 5 is odd,
H07 = (C)mip™T

1)mip )(p® — 1), if s is even.

Then,
|T_1| = |N_1,1] + | N1,—1]

{%W—nwm—em%“emmffxﬁwwﬁ

%(pe — p™m—e, if s is even.

This completes the proof. (I

Our main result for a = 0 is:
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TABLE 1. The corresponding code Cp, in Theorem 9, when e
is odd and s is odd.

np,0)(0) nw,0)(p)(p # 0) Frequency
m—1

pret -1 P =T ST =)
pm—e—l -1 pm—e—l 4 771( ) o= %(pm—e _ 1)

m—e—2 m—e—2 m—e
R S A N e N L 20 =D+ P )
preTl = (p—1)p -1 pmely Lt —1)(pm e —p 7))
p'ITL e 1 0 1

TABLE 2. The corresponding code Cp, in Theorem 9, when e
is odd and s(> 2) is even.

n(5,0y(0) ne,0)(p)(p # 0) Frequency
m—e—1

prel—1 P = mlp)p” 3(p° — l)pm"”
pm e—1 _ 1 pmfefl + 771( )p - %(pe _ 1)

m—2 m—2 m m— 26
Pl +(p—1p T —1 pmel_pe ;0T —(p 2z +1)

m—2 m—2 m m—2e
prel—(p—1p T —1 pmel4pe s +1)(pz 1)
pmTe —1 0 1

Theorem 9. The code Cp, is a [p™~°—1,m| linear code except for s = 2, which
is a [p® — 1, €] linear code. Their complete weight enumerators are described as
follow:
(i) If e is odd and s is odd, then the complete weight enumerator of the code
Cp, ts described as in Table 1;
(ii) If e is odd and s is even, then the complete weight enumerator of the code
Cp, is described as in Table 2 when s > 2 and as in Table 3 when s = 2;
(iii) If e is even and s is odd, then the complete weight enumerator of the code
Cp, is described as in Table 4;
(iv) If e is even and s is even, then the complete weight enumerator of the
code Cp, is described as in Table 5 when s > 2 and as in Table 6 when
s =2.

Proof. (i) If e is odd and s is odd, then m is odd. To obtain the complete
weight enumerators in this case, we give a partition of Fy as follows

Fy=MoUMyUT_; UTh.

Note that from (9) the elements in the same part of the partition correspond
to the codewords with the same coordinate symbol distribution, and the con-
verse is also right. Thus, it suffices to calculate n g)(p) with 0 < p <p—1 for
the elements b in each part of the partition, and then we determine the size of
each part of the partition.
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For p # 0, we get by using (9) that
—1 m—1
- (_1)%(_1%14—1771(/’ p 2

p—1 m—e—2

 (—Dmtep 2

—e—1

"0y (p) = P and

nep,0)(p) =p™ 7+ (—1)
for b € My and b € T_1, respectively.

Similarly, for the cases b € My and b € T}, we may get n,0)(p) by (9).
Since n,0)(0) = no — i;} n@,0)(p) (see (7)), we can also get 1, 0)(0) in all
the cases.

Finally, Lemmas 4 and 8 yield | M|, [Mo|,|T-1| and |T}[, that is, the number
of the codewords with the same coordinate symbols distribution corresponding
to each part of the partition.

Since, for any b € Fy, the codeword ¢, € Cp, obtained by taking z as b in
(1) is non-zero, we obtain dim(Cp,) = m over F,,, that is, Cp, is a [p™ ¢ —1,m)]
linear code.

We list the complete weight enumerator in Table 1. Note that each row in
Table 1 stands for a kind of coordinate symbols distribution in the code Cp,,
and the last column stands for the number of the codewords with each kind of
coordinate symbols distribution. Other tables in the paper will preserve similar
meaning as Table 1.

(ii) For the case e is odd and s is even, we can obtain the complete weight
enumerators listed in Table 2 by using m being even and similar arguments as
in (i). It needs to point out that the case s = 2 should be separated from Table
2 because of the dimension variation of Cp,.

If s = 2, then m = se = 2e. For p # 0, we may get from Remark 6 and (9)
that

nwoy(p) =p° "+ (—1)26(—1)19%1;06_1 =0 whenever Tr2¢(b~*) = 0.

That is, wt(cy) = 0 whenever Tr2¢(b=1) = 0. Thus, there are p® elements b
in F, such that wt(c,) = 0 (wt(-) stands for Hamming weight), thus, the code
Cp, only has p?¢/p® = p° different codewords and is a [p® — 1,¢] code. We
get the complete weight enumerators with respect to m = se = 2e in Table 3
which can be obtained by modifying Table 2. Note from Table 3 that all the
non-zero codewords have the same Hamming weight, and thus the code Cp,
with respect to m = 2e is constant-weight.

(iii) If e is even and s is odd, then m is even. We may obtain the complete
weight enumerators in Table 4 by using similar arguments as in (i).

(iv) If e is even and s is even, then m is even. We get the results in Tables
5 and 6 for s > 2 and s = 2, respectively, by using similar arguments as in (ii).

This completes the proof. O

Example 10. Let (p,m,e,s) = (3,3,1,3) and a = 0. Then by Theorem 9 and
Table 1, the code Cp, has parameters [8,3, 4] and complete weight enumerator

8 2, 6 2, 6 4.2 2 4, 4
wy + dwiw, + dwyw? + 12wgwiw; + 6wiws
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TABLE 3. The corresponding code Cp, in Theorem 9, when e
is odd and s = 2.

n(b,O)(O) (b,0) (P)(P # 0) Frequency
pt—1 pt— 771(p)p? $(p°—1)
Pt =1 plam(pp T F(p°-1)
-1 0 1

TABLE 4. The corresponding code Cp, in Theorem 9, when e
is even and s is odd.

n(p,0)(0) n,0)(p)(p # 0) Frequency
m—2 m—2

pre i+ (p—1pT -1 pmtelpTe (e —1)

m—e—1 m—2 m—e—1 m—2 1/ m—e
p —(p-lp 7 ~1 p tp = (") )
e It T el U R A VA
prTel—(p—Dp 2 =1 prlepte o S -1 -p )
pre 1 0 1

TABLE 5. The corresponding code Cp, in Theorem 9, when e
is even and s(> 2) is even.

n(p,0)(0) n,0)(p)(p # 0) Frequency
m—=2 m—2 m m—2e

preTi A (p-1pT —1 prtelops Lp% —1)(p™== +1)

m—e—1 m—2 m—e—1 m—2 1, m m—2e
p (p—1p = - p T ST DETE )
P+ (p—-1)p 2 preTlop 2 3(p° = 1)pme
pm—e—l _ (p _ 1)p 5 pm—e—l +p 2 %(pe _ 1)pm—e
pre — 1 0 1

TABLE 6. The corresponding code Cp, in Theorem 9, when e
is even and s = 2.

n(b,0) (0) (b,0) (P)(P S 0) Frequency

m—e—2 m —2
PR (- DptET -1 pret =t S0 - 1)
preTl—(p—1pTz =1 pmelypte $(p°—1)
pre 1 0 1

and is almost optimal. This code can be punctured into a shorter code (see
[10, Corollary 2.3]) with parameters [4, 3, 2] which is optimal.
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Example 11. Let (p,m,e,s) = (3,6,3,2) and ¢ = 0. Then by Theorem
9 and Table 3, the code Cp, has parameters [26,3,18] and complete weight
enumerator

wi® + 13wiwiwy? + 13wiwi?ws.
This code is optimal.

Example 12. Let (p,m,e,s) = (3,4,2,2) and a = 0. Then by Theorem 9 and
Table 6, the code Cp, has parameters [8,2, 4] and complete weight enumerator

wh + dwgwiws + dwiws.

This code can be punctured into a shorter code (see [10, Corollary 2.3]) with
parameters [4, 2, 2] which is almost optimal.

3.2. a #0.

Still from (8), Lemmas 1 and 2, we have

pm e i Tr (b)) =0,

P AT T () (T (071))
Tr{(a*(Tr" (b~ -

G Ge ZyeF; Cg( $(@*(Tr"(677)77) p)m(y)7

N(p,a)(p) = § if eis odd, s is even and Tr(b=1) #0,

P 4+ pm i (B)ne (=TT (b71))

e(. 2 mp—1yy—1
GmGe ZyEF}j g(Tﬁ(a (T""e b)) )*P)7

if e is even or s is odd and Tr™ (b~ 1) # 0.
pre=l i Trm(b=1) = 0,
pm~eL, if e is odd, s is even, Tr™ (b~ 1) #£0 and Tr§(a2(Tr (b~ 1)) ") =p,
P T T e (D) e (=T (b))
m(Tr§(@®(Tre (b)) 1) — p)GmGeGa,
= ( ifeisodd, sis even, Tr™(b~1) # 0 and Tr¢(a?(Tr (b~ 1))~ 1) # p,
P T T (P = Dim (0)ne (=TT (b7 1) GG,
if e is even or s is odd, Tr7*(b~1) # 0 and Tr§(a?(Trm(b~1))~1) = p,
Pt = p T g (B)ne (=T (b)) GG,
if e is even or s is odd Tr7(b™1) # 0 and Tr$(a?(Tr (b~ 1))~ 1) # p.
pmTeTl if Trm(b~1) =0,
p™m~eL, if e is odd, s is even, Tr™ (b~ 1) #£0 and Tr§(a2(Tr (b~ 1)) ") =p,
—1
pmTeTh 4 (‘UPT (—Dmet1
1 (D)1 (Trg (b~ ) (Tr§ (a®(Tr (0~ ) ") —p)p 2,
10) ={ ifeisodd, sis even, Tr™(b~1) # 0 and Tr¢(a?(Trm (b= 1))~ 1) # p,
(p—1)e m—e—2
P 4 (1) 5T (Do (0)ne (Tr (57 ) (0~ 1™
if e is even or s is odd, Tr7*(b~1) # 0 and Tr§(a?(Trm(b~1))~1) = p,
p

(
(p—1)e m—e—2
P () (e (B (T (6 ) S
if e is even or s is odd, Tr7*(b~1) # 0 and Tr§(a?(Trm(b~1))71) # p.

Lemma 13. Let a € Fye, v € F, and k € {—1,1}, denote

Sty = {2 € Byt n(@)ne(Tr(27h)) = k and Tri(a®(Tre(271)) ™) =7}
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Then, for e being odd and s being odd, we have

m—e

St _{ 5077 0" (1) (D mgehp ™), if 7 #0,
Y T p—1 m—e .
S0 = D7+ (1T (- Dgekp™T), if =0,

for e being odd and s being even, we have

p —e—1

Sk = { S0 = ()T (Dmesihm (D), i 7 #0,
R m— m—e .
%(p t - p )7 foy = Oa

for e being even and s being odd, we have

s =Dt —kpTE ), ify=0,
and for e being even and s being even, we have
S = { %(pm*1 — (= D)ekp™F), o Z:fv # 0,
s =pm e+ (“)ek(p—1)p 2 ), ify=0.

Proof. Let y = Tr™(x~1!). We only consider v # 0 in the sequel. Observe that
S0l = {a € Fy e Tri(a®y™") = 7 # 0} — [S_1,4]

q
= [z elFy: Tri(a=") =y #0}|{y € Fpe : Tr$(a*y™') = v # 0}
- |Sfl7'\/|
— pmfl . |S_17»Y )

Thus, we only focus on |S_q |.
For i,5 € {—1,1}, define

Nij~={z € Fy : nm(z) =1, Ne(Tr™(z~1)) = j and
Tri(@*(Tr (™)™ =7 # 0}
From Lemma 4 and Remark 5, we have
INijr| = {2 € Fy : mm(x) = 4, ne(y) = j and Tri(a®y~") =~ # 0}

=H{z e F; i m(x) =4 and Tr;“(x_l) =y #0}
{y € Fye :me(y) = j and Tri(a®y~") =~ # 0}

— o €F} i nm(e) =i and Trl(a~1) = y £ 0}
Hy € Fye : me(y) = j and Tri(y~1) = # 0}

p=1 L ome—e p—1 ) e—1
10"+ (D)7 (D meijp 2 )T 4 (=12 (—Degrim(p 7 ),
if e is odd and s is odd,

Com=—2e p=1 ) et
(@™ = (=Dmip” 2 )P+ (=1) 2 (=Derrim(Mp 2 ),
if e is odd and s is even,
m—e e—2
Fm —ijp z )(p*Tt = (—ejp 2 ),
if e is even and s is odd,

Lpme +ip T ) = (<1)ejp )
4 eJP »
if e is even and s is even.
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Then,
|S*11’Y‘ = |N71,1,'y| + ‘Nl,—l,y\
1 m—e

%Ifﬁl(pmie - (_1)%(_1)m+6p7)7
if e is odd and s is odd,

p—1 m—e—1
0™+ (DT (Dmgerim(Mp 2 ),
if e is odd and s is even,

T+ p ),
if e is even and s is odd,
m—e—2

s (= )epT ),
if e is even and s is even.

By the same method, we can also compute Si , when v = 0. This completes
the proof. O

TABLE 7. The corresponding code Cp, in Theorem 14, when

s is odd.

N(b,a0)(0) N(b,a20)(P)(p # 0)  Frequency
pm—e—l pm—e—l pm—e -1
p'IYL—e O 1

m—e—2 m—e—2 m—e
P = (p=p T T T T (T - )T =)
P+ (p—p 2 pmelope s =D +p )
N(b,a0)(P) (P =) N(,a20)(p)(p #7) Frequency

m—e—2 m—e—2 m—e
preet—(p=pT 2 pmehapt e i —p )
pm—e—l 4 (p _ 1)pm72672 pm—e—l _ pm%H %pe—1<pm—e +pm;e)

where 7y runs though Fy.

Our main result for a # 0 is:

Theorem 14. Let Cp, be defined as previous and a # 0, Then, the code Cp,
is a [p™~ ¢, m] linear code and its the complete weight enumerator is described
as follow:

(i) If s is odd, then the complete weight enumerator of the code Cp, 1is de-
scribed as in Table 7,
(ii) If s is even and e is odd, then the complete weight enumerator of the code
Cp, ts described as in Table &,
(iii) If s is even and e is even, then the complete weight enumerator of the
code Cp, is described as in Table 9.

Proof. (i) Assume s is odd. Then, we will state that the complete weight
enumerators are described as in Table 7 no matter whether e is odd or even.
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TABLE 8. The corresponding code Cp, in Theorem 14, when

s is even and

e is odd.

n(b,a;éo)(o) n(b,a;éO)(p) (p # 0) Frequency

pm—e—l pm—e—l pm—e -1

pm—e 0 1

pret P = (p)p st —pme)
pre! P () s —pme)
n(b,a;ﬁo)(ﬂ)(P =) n(b,a;éO)(p) (0 # ) Frequency

proet P =y = o)™ L ()
pret P ey —p)p T A ()™ )

where 7 runs though F}.

TABLE 9. The corresponding code Cp, in Theorem 14, when
s is even and e is even.

N(b,a220)(0) N(b,a20)(p)(p # 0)  Frequency
pmfefl pmfefl pmfe -1
pm—e 0 1
m—e—2 m—e—2 m—e—2

PR == ptE T et (T (- )
P+ (p—Dp 2 pmet—pte s Sl -pm - (p—1p = )
N(v,a20) (P) (P = 7) N(b.az0)(p)(p #7) Frequency

o m—e—2 _ m—e—2 _ m—e—2
pm e 17(p71)p 7272 pm e 1+p 7272 %(pm 1*]) 7272)
Pl (p-1)pTe o prel—pte fpmt+ptE)

where 7 runs though F}.

We only consider the case e being odd, and for e being even, similar arguments

can be carried out.

When both s and e are odd, due to (10) we get a partition of the set I, as

follows:

F, ={beF,
={bel;

Tr (b ) =0} u{b

eF,: Tr(b~ 1) # 0}

: Trgl(b_l) = 0} U (UMSM),

where k, v and Sy, are described as in Lemma 13.

Observe that from (10) the elements in the same part of the partition of
[y, correspond to the codewords with the same coordinate symbol distribution,
and the converse is also right. Thus, it suffices to calculate n qy(p) with
0 < p < p—1 for the elements b in each part of the partition, and then we
determine the size of each part of the partition.
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As a first step, since the codeword ¢, € Cp, is non-zero for any b € F by
(10), we obtain dim(Cp,) = m. that is, Cp, is a [p™~¢, m| linear code.

Then, consider the part of the partition {b € F; : Tr7*(b~') = 0}. For
each element b of this part, it holds n q)(p) = p™~ 1 for any p # 0 by (10).
Furthermore, the number of codewords with the above property is equal to

{b e Iy : Tr(b ) =0} =p™ ¢ — 1.
Now, let us consider Sk, if v = 0 and b € Sk,y = Sko, then we have
Nipa)(p) = P = (=1)" 7T (~ D) ckp™ 7 for any p # 0 by (10). Ifyp # 0

and p # 7, we have ngq)(p) = p™ "t = (=1)"T (=1)mychp™ by (10),
and if vp # 0 and p = 7, we have ng q)(p) =p™ ' + (-1 )i(—l)m“kz(p -
m— (’ 2
Lp by (10).
Since np,q)(0) = p™ ¢ — Zi;} N(b,a)(p), We get g q)(0) in the above cases.
Finally, by using Lemma 13, the size |Sy, 5| of each part Sy , can be obtained,
and we list the complete weight enumerators of the code Cp, in Table 7.
Similar arguments as in (i) yield the results in (ii) and (iii), which are listed
in Tables 8 and 9, respectively, and the details are omitted.
This completes the proof. O

Remark 15. It is observed that, when a # 0, the complete weight enumerator
of the code Cp, are independent of the choice of a.

Example 16. Let (p,m,e,s) = (3,3,1,3) and a # 0. Then by Theorem 14 and
Table 7, the code Cp, has parameters [9, 3, 5] and complete weight enumerators

9 3,3, 3 2,2, 5
w) + 8wiwiws 4 3wiwiws + 6wiwiw? + 3wiwiws + 6wiwiws.

This code is almost optimal.
Example 17. Let (p,m,e,s) = (3,6,3,2) and a # 0. Then by Theorem

14 and Table 8, the code Cp, has parameters [27,6,15] and complete weight
enumerator

w87 + 26w wiw) + 108wiwlwy? + 108wywi?ws + 123wiw]ws>
+ 120w wiws + 120w 2wl ws 4 123wiwi?w).
This code is optimal.
Example 18. Let (p,m,e,s) = (3,4,2,2) and a # 0. Then by Theorem 14 and

Table 9, the code Cp, has parameters [9, 4, 4] and complete weight enumerator

wy + Swiwiws + lOwéw‘fqu1 + Swiwiws + 13w0w%w‘2L

+ ldwiwiws + 13wjwiws + 14wiwiws.
This code is almost optimal.
Remark 19. The defining set in this paper can be generally defined by D, («, 5)
={z €F;:Trl*(ax + B) = a}, where a € Fye, « € F; and 8 € F,.
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If (o, B) = (0, 0), then by using similar proof as in this paper we can obtain
that the code Cp, («,0) has the same complete weight enumerators as Cp, . To get
the result, we need the following modifications: the parameter b~! is replaced
by a?b~1 in (8), (9) and (10), and z~! is replaced by a?z~! in Lemmas 4, 8
and 13 due to Remark 7.

If (o, 8) = (o, # 0), then we may rewrite the defining set as {z € F :
Tr(ax) = a — Trl*(8)}, and then the complete weight enumerators of the
code Cp, (a,3) can be determined from Cp, (q,0)- The details are omitted.

4. Conclusion

In this paper, we constructed several classes of linear codes with a few
weights by choosing the defining set properly, and then we determined the
complete weight enumerators of these classes of codes.
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