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A NOTE ON PROOF OF GORDON’S CONJECTURE

Kun Du

Abstract. In this paper, we show a proof of Gordon’s Conjecture by

using Qiu’s labels and two new labels.

1. Introduction

All 3-manifolds in this paper are assumed to be compact and orientable. All
surfaces in 3-manifolds are assumed to be orientable.

Let M be a 3-manifold. If there is a closed surface S which cuts M into
two compression bodies V and W with S = ∂+W = ∂+V , then we say M has
a Heegaard splitting, denoted by M = V ∪S W ; and S is called a Heegaard
surface of M . If there are essential disks B ⊂ V and D ⊂ W such that
∂B = ∂D (resp. ∂B ∩ ∂D = ∅), then M = V ∪S W is said to be reducible
(resp. weakly reducible); otherwise, M = V ∪S W is said to be irreducible
(resp. strongly irreducible). If there are essential disks B ⊂ V and D ⊂ W
such that |B ∩D| = 1, then M = V ∪S W is said to be stabilized; otherwise,
M = V ∪S W is said to be unstabilized.

Let M be a 3-manifold, F be a connected closed surface in M , which cuts
M into two 3-manifolds M1 and M2. Suppose that Mi = Vi ∪Si Wi is a
Heegaard splitting of Mi (i = 1, 2). Then, M has a natural Heegaard splitting
M = V ∪SW called the amalgamation of M1 = V1∪S1

W1 and M2 = V2∪S2
W2

along F , see [8]. From this construction, we have g(M) ≤ g(M1)+g(M2)−g(F ).
So, there is an interesting question as follows:

Question 1.1. When M = V ∪S W is unstabilized?

If g(F ) = 0, then it is the Gordon’s Conjecture ([2]). Bachman ([1]), Qiu
([6]), Qiu and Scharlemann ([7]) give an affirmative answer about this question.
But for generally case, it is not true. There are two counterexamples, such
that g(M) < g(M1) + g(M2)− g(F ), see [4] and [9]. In [3], Kabayashi and Qiu
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proved the uniqueness of minimal Heegaard splitting M = V ∪S W by using
sufficiently complicated manifolds, i.e., the amalgamation of M1 = V1 ∪S1

W1

and M2 = V2 ∪S2 W2 along F . In [5], Lackenby proved the uniqueness of
minimal Heegaard splitting M = V ∪S W by using sufficiently complicated
map, i.e., the amalgamation of M1 = V1 ∪S1

W1 and M2 = V2 ∪S2
W2 along F .

If g(F ) = 0, then S can be isotoped, such that F ∩ S is an essential simple
closed curve on S. Hence, M = V ∪S W is the reducible Heegaard splitting
and F is the reducing 2-sphere. So, F cuts V into V 1 and V 2 and cuts W
into W

′

1 and W
′

2 such that M1 = V 1 ∪W
′

1 and M2 = V 2 ∪W
′

2. Let W i =

W
′

i∪∂F=∂B3
i
B3

i (i = 1, 2), where B3
i is a 3-ball. Then, W i is a compression body

and M i = V i ∪Si W i is a Heegaard splitting of M i with Si = ∂+V
i = ∂+W

i.
So, M = V ∪S W is said to be the connected sum of M1 = V 1 ∪S1 W 1 and
M2 = V 2 ∪S2 W 2. In this paper, we show a proof of Gordon’s Conjecture by
using Qiu’s labels in [6] and two new labels as follows:

Theorem 1.2. The connected sum M = V ∪S W of M1 = V 1 ∪S1 W 1 and
M2 = V 2 ∪S2 W 2 is stabilized if and only if one of M1 = V 1 ∪S1 W 1 and
M2 = V 2 ∪S2 W 2 is stabilized.

2. The proof of Theorem 1.2

Proof. If one of M1 = V 1 ∪S1 W 1 and M2 = V 2 ∪S2 W 2 is stabilized, then
by the construction of Heegaard splitting of connected sum, M = V ∪S W is
stabilized. So, we only prove that if M = V ∪S W is stabilized, then one of
M1 = V 1 ∪S1 W 1 and M2 = V 2 ∪S2 W 2 is stabilized.

Since M = V ∪S W is stabilized, there are two disks DV ⊂ V and DW ⊂W
such that |DV ∩DW | = 1. Let x = DV ∩DW , FV = F ∩ V and FW = F ∩W ,
where F is the reducing 2-sphere of M = V ∪S W . Then FV is an essential
disk in V and FW is an essential disk in W .

Proposition 2.1. If either DV ∩ FV = ∅ or DW ∩ FW = ∅, then one of
M1 = V 1 ∩S1 W 1 and M2 = V 2 ∩S2 W 2 is stabilized.

Proof. If DV ∩FV = ∅, then DV is a properly embedded disk in V 1 or V 2. We
may assume that DV lies in V 1. If DW ∩ FW = ∅, since |DV ∩DW | = 1, DW

is a properly embedded disk in W 1. Hence, M1 = V 1 ∪S1 W 1 is stabilized and
Proposition 2.1 holds. So, we may assume that DW ∩FW 6= ∅ and |DW ∩FW | is
minimal. Hence, each component of DW ∩FW is an arc on both DW and FW .
Let S

′

i = Si ∩ S (i = 1, 2). Since |DW ∩ FW | is minimal, each component of

∂DW ∩S
′

i is an essential arc on S
′

i . Let DW
1 be a subdisk of DW , which is cut by

FW , such that |DV ∩DW
1 | = 1. Since DV ∩FV = ∅, we can push all components

of ∂DW
1 ∩ FW into S

′

1, after isotopy, still denote it by DW
1 . Then, DW

1 is a
properly embedded disk in W 1 and |DV ∩DW

1 | = 1. So, M1 = V 1 ∪S1 W 1 is
stabilized and Proposition 2.1 holds.

If DW ∩ FW = ∅, then DW is a properly embedded disk in W 1 or W 2. We
may assume that DW lies in W 1. If DV ∩FV = ∅, then by the same argument
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as above, M1 = V 1∪S1 W 1 is stabilized and Proposition 2.1 holds. So, we may
assume that DV ∩ FV 6= ∅ and |DV ∩ FV | is minimal. Hence, each component

of DV ∩FV is an arc on both DV and FV , and each component of ∂DV ∩S
′

i is

an essential arc on S
′

i (i = 1, 2). Let DV
1 be a subdisk of DV , which is cut by

FV , such that |DV
1 ∩DW | = 1. Then, DV

1 is a properly embedded disk in V 1.
Hence, M1 = V 1 ∪S1 W 1 is stabilized and Proposition 2.1 holds. �

By Proposition 2.1, we may assume that DV ∩FV 6= ∅, DW ∩FW 6= ∅, both
|DV ∩FV | and |DW ∩FW | are minimal. Hence, each component of DV ∩FV is
an arc on both DV and FV , each component of DW ∩FW is an arc on both DW

and FW , each component of ∂DV ∩ S
′

i is essential on S
′

i , and each component

of ∂DW ∩ S
′

i is essential on S
′

i (i = 1, 2). After isotopy, we may assume that

x = DV ∩ DW lies in S
′

1. Let |DV ∩ FV | = p and |DW ∩ FW | = n. Now we
show Qiu’s labels (see [6]) and two new labels for each arc of DV ∩ FV on FV

and DW ∩ FW on FW as follows:
For each component e of DV ∩ FV on FV , e cuts DV into two disks V

′

e and

V
′′

e , such that x lies in ∂V
′

e . Let Ve be a subdisk of DV , which is cut by FV ,

such that ∂Ve contains e and Ve ⊂ V
′′

e , see Figure 3 in [6]. Then, Ve is a
properly embedded disk in V 1 or V 2. If Ve lies in V 1, then we label e with
“+ ”; if Ve lies in V 2, then we label e with “−”. Similarly, for each component
e of DW ∩ FW on FW , e cuts DW into two disks W

′

e and W
′′

e , such that x lies

in ∂W
′

e. Let W 1
e be a subdisk of DW , which is cut by FW , such that ∂W 1

e

contains e and W 1
e ⊂ W

′′

e . Then, W 1
e is a properly embedded disk in W

′

1 or

W
′

2. If W 1
e lies in W

′

1, then we label e with “ + ”; if W 1
e lies in W

′

2, then we
label e with “− ”.

Since |DV ∩ FV | = p and |DW ∩ FW | = n, we label the arcs of DV ∩ FV on

FV with {v1, . . . , vp} and label the arcs of DW ∩FW on FW with {w′1, . . . , w
′

n},
such that if V

′′

vi
( V

′′

vk
and W

′′

w
′
j

( W
′′

w
′
l

, then i < k and j < l. So, each subdisk

of DV which is cut by FV and does not contain x is denoted by Vvi (1 ≤ i ≤ p)
and each subdisk of DW which is cut by FW and does not contain x is denoted
by W 1

w
′
j

(1 ≤ j ≤ n). For convenience, we denote Vvi by Vi and denote W 1
w
′
j

by

W 1
j . Let Vx be the subdisk of DV which is cut by FV , such that ∂Vx contains

x, W 1
x be the subdisk of DW which is cut by FW , such that ∂W 1

x contains x.

Remark 2.2. Since x lies in S
′

1, each subdisk of DV which is cut by FV and lies
in V 1, is either Vi, where the label vi is “ + ”, or Vx; each subdisk of DV which
is cut by FV and lies in V 2, is Vi, where the label vi is “ − ”; each subdisk of
DW which is cut by FW and lies in W

′

1, is either W 1
j , where the label w

′

j is

“ + ”, or W 1
x ; and each subdisk of DW which is cut by FW and lies in W

′

2, is

W 1
j , where the label w

′

j is “− ”.

For each component w
′

j (1 ≤ j ≤ n) of DW ∩ FW on FW , wj is said to be

the dual arc of w
′

j on FV , if ∂wj = ∂w
′

j . After isotopy, we may assume that
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for each component vi (1 ≤ i ≤ p) of DV ∩ FV on FV , |wj ∩ vi| ≤ 1. We may

assume that wj and w
′

j have the same labels. For each subdisk W 1
j (1 ≤ j ≤ n

or j = x) of DW which is cut by FW , we can push each arc w
′

k of ∂W 1
j ∩FW on

FW into FV , such that w
′

k is replaced by wk on FV . After isotopy, we denote
it by Wj . Then, Wj is a properly embedded disk in W 1 or W 2.

So, for each arc vi (1 ≤ i ≤ p) of DV ∩ FV on FV and each dual arc wj

(1 ≤ j ≤ n) of DW ∩ FW on FV , |vi ∩ wj | ≤ 1. Let I(vi) = {r | vr ⊂ ∂Vi and
vr 6= vi}, I(wj) = {r |wr ⊂ ∂Wj and wr 6= wj}, I(v) = {r | vr ⊂ ∂Vx} and
I(w) = {r |wr ⊂ ∂Wx}. Then, there are some properties for I(vi), I(wj), I(v),
I(w), Vi, Vx, Wj and Wx as follows:

Proposition 2.3 ([6]). (1) If r ∈ I(vi), then r < i;
(2) if r ∈ I(wj), then r < j;
(3) the label vi is “ + ” if and only if the label vr is “− ” for each r ∈ I(vi);
(4) the label wj is “+” if and only if the label wr is “−” for each r ∈ I(wj);
(5) if r ∈ I(v), then the label vr is “− ”;
(6) if r ∈ I(w), then the label wr is “− ”;
(7) p ∈ I(v), n ∈ I(w);
(8) there are four sets of pairwise disjoint properly embedded disks {Vi | 1 ≤

i ≤ p and the label vi is “ + ”} ∪ {Vx} in V 1, {Vi | 1 ≤ i ≤ p and the label vi is
“ − ”} in V 2, {Wj | 1 ≤ j ≤ n and the label wj is “ + ”} ∪ {Wx} in W 1, and
{Wj | 1 ≤ j ≤ n and the label wj is “ − ”} in W 2, satisfying the following
conditions:

(i) Vi∩FV = vi∪r∈I(vi) vr, Wj ∩FV = wj ∪r∈I(wj)wr, Vx∩FV = ∪r∈I(v)vr,
Wx ∩ FV = ∪r∈I(w)wr;

(ii) if Vi lies in V 1 and Wj lies in W 1, then Vi∩Wj = Vi∩Wj∩FV , Vi∩Wx =
Vi ∩Wx ∩FV , Vx ∩Wj = Vx ∩Wj ∩FV , and Vx ∩Wx = {x} ∪ (Vx ∩Wx ∩FV );

(iii) if Vi lies in V 2 and Wj lies in W 2, then Vi ∩Wj = Vi ∩Wj ∩ FV .

Since FV cuts V into V 1 and V 2, let F k
V (k = 1, 2) be a copy of FV , such

that F k
V lies in Sk, vki be a copy of vi on F k

V and wk
j be a copy of wj on F k

V

(1 ≤ i ≤ p; 1 ≤ j ≤ n). We may assume that vki and vi have the same label,
and wk

j and wj have the same label. For convenience, v1i = v2i means that both

v1i and v2i are the copies of vi, and w1
j = w2

j means that both w1
j and w2

j are
the copies of wj .

Outline of the proof of Theorem 2. By using Qiu’s labels and two new
labels, we band sum disks of {Vi | 1 ≤ i ≤ p and the label vi is “ + ”} ∪ {Vx}
in V 1 along some arcs obtained from {w1

1, w
1
2, . . . , w

1
n} on S1, band sum disks

of {Wj | 1 ≤ j ≤ n and the label wj is “ + ”} ∪ {Wx} in W 1 along some arcs
obtained from {v11 , v12 , . . . , v1p} on S1, band sum disks of {Vi | 1 ≤ i ≤ p and the

label vi is “− ”} in V 2 along some arcs obtained from {w2
1, w

2
2, . . . , w

2
n} on S2,

and band sum disks of {Wj | 1 ≤ j ≤ n and the label wj is “− ”} in W 2 along
some arcs obtained from {v21 , v22 , . . . , v2p} on S2. Finally, either there are two

disks DV 1 ⊂ V 1 and DW 1 ⊂W 1 with |DV 1 ∩DW 1 | = 1 or there are two disks
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DV 2 ⊂ V 2 and DW 2 ⊂W 2 with |DV 2 ∩DW 2 | = 1. So, one of M1 = V 1∪S1 W 1

and M2 = V 2 ∪S2 W 2 is stabilized.

Proposition 2.4. Either there are two disks DV 1 ⊂ V 1 and DW 1 ⊂ W 1 with
|DV 1 ∩ DW 1 | = 1, where DV 1 is obtained by banding sum disks of {Vi | 1 ≤
i ≤ p and the label vi is “ + ”} ∪ {Vx} in V 1 along some arcs obtained from
{w1

1, w
1
2, . . . , w

1
n} on S1, and DW 1 is obtained by banding sum disks of {Wj | 1 ≤

j ≤ n and the label wj is “ + ”} ∪ {Wx} in W 1 along some arcs obtained from
{v11 , v12 , . . . , v1p} on S1, or there are two disks DV 2 ⊂ V 2 and DW 2 ⊂ W 2 with
|DV 2∩DW 2 | = 1, where DV 2 is obtained by banding sum disks of {Vi | 1 ≤ i ≤ p
and the label vi is “−”} in V 2 along some arcs obtained from {w2

1, w
2
2, . . . , w

2
n}

on S2, and DW 2 is obtained by banding sum disks of {Wj | 1 ≤ j ≤ n and the
label wj is “− ”} in W 2 along some arcs obtained from {v21 , v22 , . . . , v2p} on S2.

Proof. We consider all arcs {v1, v2, . . . , vp} of DV ∩ FV on FV in sequence. If
we consider all dual arcs {w1, w2, . . . , wn} of DW ∩FW on FV in sequence, then
the argument is the same. So, we may assume that p ≤ n. First, we consider v11
on F 1

V . Let m1 be the minimal label among all arcs of {w1
j | 1 ≤ j ≤ n} on F 1

V

with |w1
m1 ∩ v11 | = 1. If m1 = ∅, then for each arc w1

j (1 ≤ j ≤ n), w1
j ∩ v11 = ∅.

If m1 6= ∅, then |v11 ∩ w1
m1 | = 1 (1 ≤ m1 ≤ n). Since v1i = v2i (1 ≤ i ≤ p) and

w1
j = w2

j (1 ≤ j ≤ n), |v1i ∩w1
j | = |v2i ∩w2

j |. So, m1 is the minimal label among

all arcs of {w2
j | 1 ≤ j ≤ n} on F 2

V with |w2
m1 ∩ v21 | = 1. We may assume that

the label v1 on FV is “ + ”. If the label v1 on FV is “− ”, then the argument
is the same.

If m1 = ∅, then for each arc wk
j (1 ≤ j ≤ n; k = 1, 2), wk

j ∩ vk1 = ∅. Since

the label v1 on FV is “ + ”, the label vk1 (k = 1, 2) on F k
V is “ + ”. We label

v11 on F 1
V with “ × ” and label v21 on F 2

V with “ ◦ ”. The label “ × ” on v11
means that we delete the arc v11 on F 1

V , and the label “ ◦ ” on v21 means that
we retain the arc v21 on F 2

V . For each arc v2i (2 ≤ i ≤ p) and w2
j (1 ≤ j ≤ n),

since v2i ∩ v21 = ∅ and w2
j ∩ v21 = ∅, there is no influence on v21 when we consider

v2i and w2
j . Hence, the label “ ◦ ” on v21 means that we retain the arc v21 on

F 2
V . For convenience, for each arc vki (2 ≤ i ≤ p) and wk

j (1 ≤ j ≤ n) on Sk

(k = 1, 2), we denote them by vki1 and wk
j1

. We may assume that vki1 and vki
have the same label, and wk

j1
and wk

j have the same label. For each disk Vi

(2 ≤ i ≤ p or i = x) and Wj (1 ≤ j ≤ n or j = x), we denote them by Vi1 and
Wj1 . Since v21 is retained, we also denote it by v211 . But in the future banding

sum process, we do not consider v211 .

If m1 6= ∅, then |v11 ∩ w1
m1 | = |v21 ∩ w2

m1 | = 1.

Lemma 2.5. If the label wm1 on FV is “ + ”, then M1 = V 1 ∪S1 W 1 is
stabilized.

Proof. Since the label v1 on FV is “ + ”, V1 is a properly embedded disk in V 1.
For each r ∈ I(v1), by (1) in Proposition 2.3, r < 1. So, I(v1) = ∅. By (i) of
(8) in Proposition 2.3, V1 ∩ F 1

V = v11 ∪r∈I(v1) v1r = v11 . Since the label wm1 on
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FV is “ + ”, Wm1 is a properly embedded disk in W 1. For each r ∈ I(wm1), by
(2) in Proposition 2.3, r < m1. By the minimality of m1, w1

r ∩ v11 = ∅. By (8)
in Proposition 2.3, |V1∩Wm1 | = |V1∩Wm1 ∩F 1

V | = |v11∩(w1
m1 ∪r∈I(wm1 )w

1
r)| =

|v11 ∩ w1
m1 | = 1. So, M1 = V 1 ∪S1 W 1 is stabilized. �

By Lemma 2.5, Proposition 2.4 holds. So, we may assume that the label
wm1 on FV is “− ”. Then, Wm1 is a properly embedded disk in W 2. Now we
label v11 and w1

m1 on F 1
V , and label v21 and w2

m1 on F 2
V , respectively:

(I1) Label v1
1 and w1

m1 on F 1
V .

By (8) in Proposition 2.3, |V1 ∩w1
m1 | = |(V1 ∩F 1

V )∩w1
m1 | = |v11 ∩w1

m1 | = 1.
If there is a disk Vl of {Vi | the label vi is “ + ” and 2 ≤ i ≤ p} ∪ {Vx} in V 1

with ∂Vl ∩ w1
m1 6= ∅, then we band sum Vl and k copies of V1 along w1

m1 in
some order, where |∂Vl ∩w1

m1 | = k. After banding sum and isotopy, we obtain
a properly embedded disk in V 1 and denote it by Vl1 . So, Vl1 ∩ V1 = ∅ and
∂Vl1 ∩ (w1

m1 ∪ v11) = ∅. If there is a disk Vl of {Vi | the label vi is “ + ” and
2 ≤ i ≤ p} ∪ {Vx} in V 1 with ∂Vl ∩ w1

m1 = ∅, then we do nothing and denote
it by Vl1 . After isotopy, we obtain a collection of mutually disjoint disks {Vi1 |
the label vi is “ + ” and 2 ≤ i ≤ p} ∪ {Vx1

} in V 1. For each disk Wl of {Wj |
the label wj is “ + ”, 1 ≤ j ≤ n and j 6= m1}∪{Wx} in W 1, we do nothing and
denote it by Wl1 . So, we obtain a collection of mutually disjoint disks {Wj1 |
the label wj is “ + ”, 1 ≤ j ≤ n and j 6= m1} ∪ {Wx1} in W 1.

This procedure can be viewed as for each arc v1i (2 ≤ i ≤ p), if |v1i ∩w1
m1 | = 1,

then we band sum v1i and a copy ∂V i
1 of ∂V1 along w1

m1 , where V i
1 is a copy of

V1 and ∂V i
1 ∩ F 1

V lies between v11 and v1i . After banding sum and isotopy, we
obtain a new arc and denote it by v1i1 . Before banding sum, if there is an arc

v1k (k 6= 1, i) with |v1k ∩w1
m1 | = 1, such that v1k lies between v11 and v1i , then v1k

lies between ∂V i
1 ∩ F 1

V and v1i . Let ∂V k
1 be a copy of ∂V1, where V k

1 is a copy
of V1, such that ∂V k

1 ∩ F 1
V lies between ∂V i

1 ∩ F 1
V and v1k. Then, we band sum

v1k and ∂V k
1 along w1

m1 . After banding sum and isotopy, we obtain a new arc
and denote it by v1k1

, such that v1k1
∩ v1i1 = ∅, see Figure 1. If v1i ∩ w1

m1 = ∅,
then we do nothing and denote it by v1i1 .

After banding sum and isotopy, we obtain a collection of mutually disjoint
arcs {v1i1 | 2 ≤ i ≤ p} on S1. Also, for each arc w1

j (1 ≤ j ≤ n and j 6= m1)

before banding sum, we do nothing and denote it by w1
j1

after banding sum.

So, there is a collection of mutually disjoint arcs {w1
j1
| 1 ≤ j ≤ n and j 6= m1}

on S1. Hence, v1i and w1
j (2 ≤ i ≤ p; 1 ≤ j ≤ n and j 6= m1) represent the

arcs before banding sum, v1i1 and w1
j1

represent the arcs after banding sum. We

may assume that v1i and v1i1 (2 ≤ i ≤ p) have the same label, and w1
j and w1

j1

(1 ≤ j ≤ n and j 6= m1) have the same label.
For each arc v1i1 (2 ≤ i ≤ p) and w1

j1
(1 ≤ j ≤ n and j 6= m1), v1i1 ∩ (v11 ∪

w1
m1) = ∅, |v1i1 ∩w1

j1
| ≤ 1 and |v1i1 ∩ F 1

V | ≤ 2. Since the label v11 on F 1
V is “ + ”

and the label w1
m1 on F 1

V is “−”, we label v11 on F 1
V with “×” and label w1

m1 on
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Figure 1. Band sum subdisk Vi and V1 in V 1 along w1
m1

(2 ≤ i ≤ p)

F 1
V with “ ◦ ”, see Figure 1. The label “× ” on v11 means that we delete the arc

v11 on F 1
V , the label “ ◦ ” on w1

m1 means that we retain the arc w1
m1 on F 1

V . For
each arc v1i1 (2 ≤ i ≤ p) and w1

j1
(1 ≤ j ≤ n and j 6= m1), since v1i1 ∩ w1

m1 = ∅
and w1

j1
∩w1

m1 = ∅, there is no influence on w1
m1 when we consider v1i1 and w1

j1
.

Hence, the label “ ◦ ” on w1
m1 means that we retain the arc w1

m1 . So, we also
denote it by w1

m1
1
, but in the future banding sum process, we do not need to

consider it.
By (8) in Proposition 2.3 and the argument as above, we have:

Lemma 2.6. There are two sets of pairwise disjoint properly embedded disks
{Vi1 | the label vi is “ + ” and 2 ≤ i ≤ p} ∪ {Vx1

} in V 1, and {Wj1 | the label
wj is “ + ”, 1 ≤ j ≤ n and j 6= m1} ∪ {Wx1

} in W 1, satisfying the following
conditions:

(1) Vi1 ∩ F 1
V = (v1i1 ∩ F 1

V ) ∪r∈I(vi) (v1r1 ∩ F 1
V ), Wj1 ∩ F 1

V = w1
j1
∪r∈I(wj) w

1
r1 ,

Vx1
∩ F 1

V = ∪r∈I(v)(v1r1 ∩ F 1
V ), Wx1

∩ F 1
V = ∪r∈I(w)w

1
r1 ;

(2) Vi1 ∩Wj1 = Vi1 ∩Wj1 ∩ F 1
V , Vi1 ∩Wx1

= Vi1 ∩Wx1
∩ F 1

V , Vx1
∩Wj1 =

Vx1 ∩Wj1 ∩ F 1
V , Vx1 ∩Wx1 = {x} ∪ (Vx1 ∩Wx1 ∩ F 1

V ).

Remark 2.7. For each 2 ≤ i ≤ p, 1 ≤ j ≤ n and j 6= m1, if |v1i ∩ w1
m1 | = 1

and |w1
j ∩ (v11 ∪ v1i )| = 1 before banding sum, then |v1i1 ∩w

1
j1
| = 1 after banding

sum; if |v1i ∩ w1
m1 | = 1 and |w1

j ∩ (v11 ∪ v1i )| = 0 or 2 before banding sum, then

v1i1 ∩ w1
j1

= ∅ after banding sum and isotopy; if v1i ∩ w1
m1 = ∅ before banding

sum, then |v1i1 ∩w
1
j1
| = |v1i ∩w1

j |, see Figure 2. After banding sum and isotopy,

|v1i1 ∩ w1
j1
| ≤ 1.

(I2) Label v2
1 and w2

m1 on F 2
V .

Since the label wm1 on FV is “−”, Wm1 is a properly embedded disk in W 2.
For each r ∈ I(wm1), by (2) in Proposition 2.3, r < m1. By the minimality of
m1, v21 ∩w2

r = ∅. By (8) in Proposition 2.3, |Wm1 ∩ v21 | = |(Wm1 ∩ F 2
V )∩ v21 | =

|(w2
m1 ∪r∈I(wm1 ) w

2
r) ∩ v21 | = |w2

m1 ∩ v21 | = 1. If there is a disk Wl of {Wj | the

label wj is “−”; 1 ≤ j ≤ n and j 6= m1} in W 2 with ∂Wl∩v21 6= ∅, then we band
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Figure 2. v1i ∩ w1
j and v1i1 ∩ w1

j1
(2 ≤ i ≤ p; 1 ≤ j ≤ n and j 6= m1)

sum Wl and k copies of Wm1 along v21 in some order, where |∂Wl ∩ v21 | = k.
After banding sum and isotopy, we obtain a properly embedded disk in W 2

and denote it by Wl1 . So, Wl1 ∩Wm1 = ∅ and ∂Wl1 ∩ (w2
m1 ∪ v21) = ∅. If there

is a disk Wl of {Wj | the label wj is “ − ”; 1 ≤ j ≤ n and j 6= m1} in W 2

with ∂Wl ∩ v21 = ∅, then we do nothing and denote it by Wl1 . After isotopy,
we obtain a collection of mutually disjoint disks {Wj1 | the label wj is “ − ”;
1 ≤ j ≤ n and j 6= m1} in W 2. For each disk Vl of {Vi | the label vi is “ − ”
and 2 ≤ i ≤ p} in V 2, we do nothing and denote it by Vl1 . So, we obtain a
collection of mutually disjoint disks {Vi1 | the label vi is “ − ” and 2 ≤ i ≤ p}
in V 2.

This procedure can be viewed as for each arc w2
j (1 ≤ j ≤ n and j 6= m1),

if |w2
j ∩ v21 | = 1, then we band sum w2

j and a copy ∂W j
m1 of ∂Wm1 along v21 ,

where W j
m1 is a copy of Wm1 and one component of ∂W j

m1 ∩ F 2
V which is a

copy of w2
m1 lies between w2

m1 and w2
j . After banding sum and isotopy, we

obtain a new arc and denote it by w2
j1

. Before banding sum, if there is an arc

w2
k (k 6= m1, j) with |w2

k ∩ v21 | = 1, such that w2
k lies between w2

m1 and w2
j ,

then, w2
k lies between one component of ∂W j

m1 ∩ F 2
V which is a copy of w2

m1

and w2
j . Let ∂W k

m1 be a copy of ∂Wm1 , where W k
m1 is a copy of Wm1 , such

that one component of ∂W k
m1 ∩ F 2

V which is a copy of w2
m1 lies between one

component of ∂W j
m1 ∩F 2

V which is a copy of w2
m1 and w2

k. Then, we band sum

w2
k and ∂W k

m1 along v21 . After banding sum and isotopy, we obtain a new arc
and denote it by w2

k1
, such that w2

k1
∩ w2

j1
= ∅, see Figure 3. If w2

j ∩ v21 = ∅,
then we do nothing and denote it by w2

j1
.

After banding sum and isotopy, we obtain a collection of mutually disjoint
arcs {w2

j1
| 1 ≤ j ≤ n and j 6= m1} on S2. For each arc v2i (2 ≤ i ≤ p) before

banding sum, we do nothing and denote it by v2i1 after banding sum. Then,

there is a collection of mutually disjoint arcs {v2i1 | 2 ≤ i ≤ p} on S2. Hence, v2i
and w2

j (2 ≤ i ≤ p; 1 ≤ j ≤ n and j 6= m1) represent the arcs before banding

sum, v2i1 and w2
j1

represent the arcs after banding sum. So, we may assume
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Figure 3. Band sum subdisk Wj and Wm1 in W 2 along v21
(1 ≤ j ≤ n and j 6= m1)

that v2i and v2i1 (2 ≤ i ≤ p) have the same label, and w2
j and w2

j1
(1 ≤ j ≤ n

and j 6= m1) have the same label.
For each arc w2

j1
(1 ≤ j ≤ n and j 6= m1) on S2, w2

j1
∩ (v21 ∪w2

m1) = ∅. Since

the label w2
m1 on F 2

V is “− ” and the label v21 on F 2
V is “ + ”, we label w2

m1 on
F 2
V with “× ” and label v21 on F 2

V with “ ◦ ”, see Figure 3. The label “× ” on
w2

m1 means that we delete the arc w2
m1 on F 2

V , the label “ ◦ ” on v21 means that
we retain the arc v21 on F 2

V . For each arc v2i1 (2 ≤ i ≤ p) and w2
j1

(1 ≤ j ≤ n

and j 6= m1), since v2i1 ∩ v21 = ∅ and w2
j1
∩ v21 = ∅, there is no influence on

v21 when we consider v2i1 and w2
j1

. Hence, the label “ ◦ ” on v21 means that we

retain the arc v21 . So, we also denote it by v211 , but in the future banding sum
process, we do not need to consider it.

By (8) in Proposition 2.3 and the argument as above, we have:

Lemma 2.8. There are two sets of pairwise disjoint properly embedded disks
{Vi1 | the label vi is “−” and 2 ≤ i ≤ p} in V 2, and {Wj1 | the label wj is “−”;
1 ≤ j ≤ n and j 6= m1} in W 2, satisfying the following conditions:

(1) Vi1 ∩ F 2
V = v2i1 ∪r∈I(vi) v

2
r1 , Wj1 ∩ F 2

V = (w2
j1
∩ F 2

V ) ∪r∈I(wj) (w2
r1 ∩ F 2

V );

(2) Vi1 ∩Wj1 = Vi1 ∩Wj1 ∩ F 2
V .
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Figure 4. v2i ∩ w2
j and v2i1 ∩ w2

j1
(2 ≤ i ≤ p; 1 ≤ j ≤ n and j 6= m1)
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Remark 2.9. By the argument as above, for each arc v2i1 (2 ≤ i ≤ p) and w2
j1

(1 ≤ j ≤ n and j 6= m1) on S2, if w2
j ∩ v21 = ∅, then w2

j1
lies in F 2

V and

|w2
j1
∩ v2i1 | ≤ 1; if |w2

j ∩ v21 | = 1 and v2i ∩ (∪r∈I(wm1 )w
2
r) = ∅, then |w2

j1
∩

v2i1 | ≤ 1; if |w2
j ∩ v21 | = 1 and v2i ∩ (∪r∈I(wm1 )w

2
r) 6= ∅, then |w2

j1
∩ v2i1 | ≥ 1.

Particularly, if |w2
j1
∩ v2i1 | ≥ 2, then j is not the minimal label among all arcs

of {w2
l1
| 1 ≤ l ≤ n and l 6= m1} on S2 with w2

j1
∩ v2i1 6= ∅. Specifically, if

w2
j ∩ v21 = ∅, then |w2

j1
∩ v2i1 | = |w

2
j ∩ v2i |; if |w2

j ∩ v21 | = 1, |v2i ∩ (w2
j ∪w2

m1)| = 1

and |v2i ∩ (∪r∈I(wm1 )w
2
r)| = k, then |w2

j1
∩ v2i1 | = k + 1; if |w2

j ∩ v21 | = 1,

|v2i ∩ (w2
j ∪ w2

m1)| = 0 or 2 and |v2i ∩ (∪r∈I(wm1 )w
2
r)| = k, then |w2

j1
∩ v2i1 | = k

after isotopy, see Figure 4.

Remark 2.10. By (I1), (I2), if m1 = ∅ and the label v1 on FV is “ + ”, then we
label v11 on F 1

V with “×” and label v21 on F 2
V with “◦”; if m1 = ∅ and the label

v1 on FV is “− ”, then we label v11 on F 1
V with “ ◦ ” and label v21 on F 2

V with
“ × ”; if m1 6= ∅, the label v1 on FV is “ + ”, by Lemma 2.5, we may assume
that the label wm1 on FV is “− ”, then after banding sum, we label v11 on F 1

V

with “ × ”, label w1
m1 on F 1

V with “ ◦ ”, label v21 on F 2
V with “ ◦ ”, and label

w2
m1 on F 2

V with “× ”; if m1 6= ∅, the label v1 on FV is “− ”, by Lemma 2.5,
we may assume that the label wm1 on FV is “ + ”, then after banding sum, we
label v11 on F 1

V with “ ◦ ”, label w1
m1 on F 1

V with “ × ”, label v21 on F 2
V with

“× ”, and label w2
m1 on F 2

V with “ ◦ ”.

Let 4vki1 = {j| vki1 ∩ wk
j1
6= ∅} (2 ≤ i ≤ p; 1 ≤ j ≤ n and j 6= m1; k = 1, 2).

Then, we have:

Lemma 2.11. For 2 ≤ i ≤ p, if m1 = ∅ and the label v1 on FV is “ + ”, then
4v1i1 = 4v2i1 ; if m1 6= ∅, the label v1 on FV is “ + ” and the label wm1 on FV

is “− ”, then 4v1i1 ⊆ 4v2i1 , and if j ∈ 4v2i1 −4v1i1 , then j is not the minimal

label among all arcs of {w2
l1
| 1 ≤ l ≤ n and l 6= m1} on S2 with v2i1 ∩ w2

j1
6= ∅.

Proof. Before banding sum, v1i = v2i (1 ≤ i ≤ p) and w1
j = w2

j (1 ≤ j ≤ n). If

m1 = ∅, then we do not need to band sum. So, vki = vki1 and wk
j = wk

j1
(2 ≤

i ≤ p; 1 ≤ j ≤ n; k = 1, 2). Since |v1i ∩ w1
j | = |v2i ∩ w2

j |, |v1i1 ∩ w1
j1
| = |v2i1 ∩ w2

j1
|

(2 ≤ i ≤ p; 1 ≤ j ≤ n). Hence, 4v1i1 = 4v2i1 (2 ≤ i ≤ p). So, we may assume

that m1 6= ∅. There are two cases:

Case 1 in Lemma 2.11. v1i ∩ w1
m1 = ∅ for some 2 ≤ i ≤ p.

Since v1i = v2i and w1
m1 = w2

m1 , v2i ∩ w2
m1 = ∅. By (I2), v2i = v2i1 . Since

v1i ∩ w1
m1 = ∅, by (I1), v1i = v1i1 . By Remark 2.7, for each 1 ≤ l ≤ n and

l 6= m1, |v1i1 ∩ w1
l1
| ≤ 1. Hence, for each j ∈ 4v1i1 , |w1

j1
∩ v1i1 | = 1. By (I1),

since w1
j = w1

j1
and v1i = v1i1 , |v1i ∩ w1

j | = 1. So, |v2i ∩ w2
j | = 1. If w2

j ∩ v21 = ∅,
then by (I2), w2

j = w2
j1

. Since v2i = v2i1 , |v2i1 ∩ w2
j1
| = 1. Hence, j ∈ 4v2i1 . So,

4v1i1 ⊆ 4v2i1 . If |w2
j ∩ v21 | = 1, since |v2i ∩ (w2

m1 ∪ w2
j )| = 1, by Remark 2.9,

|w2
j1
∩ v2i1 | = k + 1, where k = |v2i ∩ (∪r∈I(wm1 )w

2
r)|. Hence, j ∈ 4v2i1 . So,

4v1i1 ⊆ 4v2i1 .
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For each j /∈ 4v1i1 , v1i1 ∩w
1
j1

= ∅. Since v1i1 = v1i and w1
j1

= w1
j , v1i ∩w1

j = ∅.
So, v2i ∩ w2

j = ∅. If w2
j ∩ v21 = ∅, then by (I2), w2

j = w2
j1

. Since v2i = v2i1 ,

w2
j1
∩ v2i1 = ∅. Hence, j /∈ 4v2i1 . If |w2

j ∩ v21 | = 1, since v2i ∩ (w2
j ∪ w2

m1) = ∅,
by Remark 2.9, |v2i1 ∩ w2

j1
| = k, where k = |v2i ∩ (∪r∈I(wm1 )w

2
r)|. If k = 0,

then j /∈ 4v2i1 . If k > 0, then j ∈ 4v2i1 − 4v1i1 . Since |w2
j ∩ v21 | = 1, by the

minimality of m1 and (2) in Proposition 2.3, j > m1 > r, where r ∈ I(wm1).
Since k > 0, there is r ∈ I(wm1) with |v2i ∩ w2

r | = 1. By the minimality of m1,
w2

r ∩ v21 = ∅. By (I2), w2
r = w2

r1 . Since v2i = v2i1 , |v2i1 ∩ w2
r1 | = 1. Since j > r, j

is not the minimal label among all arcs of {w2
l1
| 1 ≤ l ≤ n and l 6= m1} on S2

with v2i1 ∩ w2
j1
6= ∅.

Case 2 in Lemma 2.11. |v1i ∩ w1
m1 | = 1 for some 2 ≤ i ≤ p.

Since v1i = v2i and w1
m1 = w2

m1 , |v2i ∩ w2
m1 | = 1. Since |v1i ∩ w1

m1 | = 1,
v1i 6= v1i1 . By Remark 2.7, for each 1 ≤ l ≤ n and l 6= m1, |v1i1 ∩ w1

l1
| ≤ 1.

Hence, for each j ∈ 4v1i1 , |w1
j1
∩ v1i1 | = 1. By Remark 2.7, |w1

j ∩ (v11 ∪ v1i )| = 1.

So, |w2
j ∩ (v21 ∪ v2i )| = 1. If w2

j ∩ v21 = ∅ and |w2
j ∩ v2i | = 1, then by (I2),

w2
j = w2

j1
. Since v2i = v2i1 , |w2

j1
∩ v2i1 | = 1. Then, j ∈ 4v2i1 . So, 4v1i1 ⊆ 4v2i1 .

If |w2
j ∩ v21 | = 1 and w2

j ∩ v2i = ∅, then |v2i ∩ (w2
m1 ∪ w2

j )| = 1. By Remark 2.9,

|w2
j1
∩ v2i1 | = k + 1, where k = |v2i ∩ (∪r∈I(wm1 )w

2
r)|. Hence, j ∈ 4v2i1 . So,

4v1i1 ⊆ 4v2i1 .

For each j /∈ 4v1i1 , w1
j1
∩ v1i1 = ∅. By Remark 2.7, |w1

j ∩ (v11 ∪ v1i ) = 0 or 2.

So, |w2
j ∩ (v21 ∪ v2i )| = 0 or 2. If w2

j ∩ (v21 ∪ v2i ) = ∅, then by (I2), w2
j = w2

j1
.

Since v2i = v2i1 , w2
j1
∩ v2i1 = ∅. Hence, j /∈ 4v2i1 . If |w2

j ∩ (v21 ∪ v2i )| = 2,

then |v2i ∩ (w2
m1 ∪ w2

j )| = 2. By Remark 2.9, |w2
j1
∩ v2i1 | = k, where k =

|v2i ∩ (∪r∈I(wm1 ))w
2
r |. If k = 0, then j /∈ 4v2i1 . If k > 0, then j ∈ 4v2i1 −4v1i1 .

By the same argument as in Case 1 in Lemma 2.11, j is not minimal label
among all arcs of {w2

l1
| 1 ≤ l ≤ n and l 6= m1} on S2 with v2i1 ∩ w2

j1
6= ∅. �

Remark 2.12. By the same proof as in Lemma 2.11, for 2 ≤ i ≤ p, if m1 = ∅ and
the label v1 on FV is “− ”, then 4v1i1 = 4v2i1 ; if m1 6= ∅, the label v1 on FV is

“−” and the label wm1 on FV is “+”, then4v2i1 ⊆ 4v1i1 , and if j ∈ 4v1i1−4v2i1 ,

then j is not the minimal label among all arcs of {w1
l1
| 1 ≤ l ≤ n and l 6= m1}

on S1 with v1i1 ∩ w1
j1
6= ∅.

Second, we consider the arc v121 on S1.

Lemma 2.13. If m2 is the minimal label among all arcs of {w1
j1
| 1 ≤ j ≤ n

and j 6= m1} on S1 with |w1
m2

1
∩ v121 | = 1, then m2 is the minimal label among

all arcs of {w2
j1
| 1 ≤ j ≤ n and j 6= m1} on S2 with |w2

m2
1
∩ v221 | = 1.

Proof. By Lemma 2.11, if m1 = ∅, then 4v121 = 4v221 ; if m1 6= ∅, then 4v121 ⊆
4v221 , and if j ∈ 4v221 −4v121 , then j is not the minimal label among all arcs

of {w2
l1
| 1 ≤ l ≤ n and l 6= m1} on S2 with v221 ∩w2

j1
6= ∅. So, if m2 is minimal
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in 4v121 , then m2 is minimal in 4v221 . By Remark 2.7, |w1
m2

1
∩ v121 | = 1. By

Remark 2.9, |w2
m2

1
∩ v221 | = 1. �

By the same proof as above (see Remark 2.10), if m2 = ∅ and the label v2
on FV is “+”, then we label v121 on S1 with “×” and label v221 on S2 with “◦”;

if m2 = ∅ and the label v2 on FV is “ − ”, then we label v121 on S1 with “ ◦ ”

and label v221 on S2 with “ × ”. For convenience, for each arc vki1 (3 ≤ i ≤ p)

and wk
j1

(1 ≤ j ≤ n and j 6= m1) on Sk (k = 1, 2), we denote them by vki2 and

wk
j2

. We may assume that vki2 and vki1 have the same label, and wk
j2

and wk
j1

have the same label. For each disk Vi1 (3 ≤ i ≤ p or i = x) and Wj1 (1 ≤ j ≤ n
and j 6= m1, or j = x), we denote them by Vi2 and Wj2 . If vk21 (k = 1, 2) is

retained, we also denote it by vk22 . But in the future banding sum process, we

do not consider vk22 .

If m2 6= ∅, the label v2 on FV is “ + ”, by Lemma 2.5, we may assume that
the label wm2 on FV is “− ”, then V21 is a properly embedded disk in V 1 and
Wm2

1
is a properly embedded disk in W 2. For each disk Vi1 (the label vi on FV

is “ + ”; 3 ≤ i ≤ p or i = x) in V 1, if Vi1 ∩ w1
m2

1
= ∅, then we do nothing and

denote it by Vi2 ; if Vi1 ∩ w1
m2

1
6= ∅, then by the same argument as in (I1), we

band sum Vi1 and V21 along w1
m2

1
, after banding sum, we denote it by Vi2 , such

that Vi2 ∩ V21 = ∅ and ∂Vi2 ∩ (v121 ∪ w1
m2

1
) = ∅. For each disk Wj1 (the label

wj on FV is “ + ”; 1 ≤ j ≤ n and j 6= m1,m2, or j = x) in W 1, we do nothing
and denote it by Wj2 . For each disk Wj1 (the label wj is “ − ”; 1 ≤ j ≤ n
and j 6= m1,m2) in W 2, if Wj1 ∩ v221 = ∅, then we do nothing and denote it

by Wj2 ; if Wj1 ∩ v221 6= ∅, then by the same argument as in (I2), we band sum

Wj1 and Wm2
1

along v221 , after banding sum, we denote it by Wj2 , such that

Wj2 ∩Wm2
1

= ∅ and ∂Wj2 ∩ (v221 ∪ w2
m2

1
) = ∅. For each disk Vi1 (the label vi is

“− ”; 3 ≤ i ≤ p) in V 2, we do nothing and denote it by Vi2 .
Correspondingly, for each arc vki1 and wk

j1
(3 ≤ i ≤ p; 1 ≤ j ≤ n and

j 6= m1,m2; k = 1, 2) on Sk before banding sum, we denote them by vki2 and

wk
j2

after banding sum. Now we label v121 on S1 with “ × ”, label w1
m2

1
on S1

with “ ◦ ”, label v221 on S2 with “ ◦ ” and label w2
m2

1
on S2 with “ × ”. Since

both w1
m2

1
and v221 are retained, for convenience, we denote them by w1

m2
2

and

v222 . But in the future banding sum process, we do not need to consider them.
So, we obtain four sets of pairwise disjoint properly embedded disks {Vi2 | the
label vi is “ + ” and 3 ≤ i ≤ p} ∪ {Vx2

} in V 1, {Wj2 | the label wj is “ + ”,
1 ≤ j ≤ n and j 6= m1,m2} ∪ {Wx2

} in W 1, {Vi2 | the label vi is “ − ” and
3 ≤ i ≤ p} in V 2, and {Wj2 | the label wj is “− ”, 1 ≤ j ≤ n and j 6= m1,m2}
in W 2, satisfying the same properties as in Lemmas 2.6 and 2.8.

If m2 6= ∅, the label v2 on FV is “− ”, by Lemma 2.5, we may assume that
the label wm2 on FV is “ + ”, then V21 is a properly embedded disk in V 2 and



A NOTE ON PROOF OF GORDON’S CONJECTURE 711

Wm2
1

is a properly embedded disk in W 1. For each disk Wj1 (the label wj is

“ + ”; 1 ≤ j ≤ n and j 6= m1,m2, or j = x) in W 1, if Wj1 ∩ v121 = ∅, then we do

nothing and denote it by Wj2 ; if Wj1 ∩ v121 6= ∅, then by the same argument as

in (I2), we band sum Wj1 and Wm2
1

along v121 , after banding sum, we denote it

by Wj2 , such that Wj2∩Wm2
1

= ∅ and ∂Wj2∩(v121∪w
1
m2

1
) = ∅. For each disk Vi1

(the label vi is “ + ”; 3 ≤ i ≤ p or i = x) in V 1, we do nothing and denote it by
Vi2 . For each disk Vi1 (the label vi is “− ”; 3 ≤ i ≤ p) in V 2, if Vi1 ∩w2

m2
1

= ∅,
then we do nothing and denote it by Vi2 ; if Vi1 ∩ w2

m2
1
6= ∅, then by the same

argument as in (I1), we band sum Vi1 and V21 along w2
m2

1
, after banding sum,

we denote it by Vi2 , such that Vi2 ∩ V21 = ∅ and ∂Vi2 ∩ (v221 ∪ w2
m2

1
) = ∅. For

each disk Wj1 (the label wj is “− ”; 1 ≤ j ≤ n and j 6= m1,m2) in W 2, we do
nothing and denote it by Wj2 .

Correspondingly, for each arc vki1 and wk
j1

(3 ≤ i ≤ p; 1 ≤ j ≤ n and

j 6= m1,m2; k = 1, 2) on Sk before banding sum, we denote them by vki2 and

wk
j2

after banding sum. Now we label v121 on S1 with “ ◦ ”, label w1
m2

1
on S1

with “ × ”, label v221 on S2 with “ × ” and label w2
m2

1
on S2 with “ ◦ ”. Since

both v121 and w2
m2

1
are retained, we denote them by v122 and w2

m2
2
. But in the

future banding sum process, we do not need to consider them. So, we obtain
four sets of pairwise disjoint properly embedded disks {Vi2 | the label vi is “+”
and 3 ≤ i ≤ p} ∪ {Vx2

} in V 1, {Wj2 | the label wj is “ + ”, 1 ≤ j ≤ n and
j 6= m1,m2} ∪ {Wx2

} in W 1, {Vi2 | the label vi is “− ” and 3 ≤ i ≤ p} in V 2,
and {Wj2 | the label wj is “− ”, 1 ≤ j ≤ n and j 6= m1,m2} in W 2, satisfying
the same properties as in Lemmas 2.6 and 2.8.

We continue this procedure as above, there are p steps. For each step l
(1 ≤ l ≤ p), by the same argument as above, before banding sum, there are four
sets of pairwise disjoint arcs {vkil−1

| l ≤ i ≤ p}∪{vkil−1
| 1 ≤ i ≤ l−1 and vkil−1

is

labelled with “◦”} and {wk
jl−1
| 1 ≤ j ≤ n and j 6= m1, . . . ,ml−1}∪{wk

jl−1
| j =

m1, . . . ,ml−1 and wk
jl−1

is labelled with “ ◦ ”} on Sk (k = 1, 2). Let 4vkil−1
=

{j| vkil−1
∩ wk

jl−1
6= ∅} (l ≤ i ≤ p; 1 ≤ j ≤ n and j 6= m1, . . . ,ml−1; k = 1, 2).

Then, we have:

Lemma 2.14. For l ≤ i ≤ p, if j ∈ 4v1il−1
− 4v2il−1

, then j is not the

minimal label among all arcs of {w1
hl−1
| 1 ≤ h ≤ n and h 6= m1, . . . ,ml−1} on

S1 with v1il−1
∩ w1

jl−1
6= ∅; if j ∈ 4v2il−1

− 4v1il−1
, then j is not the minimal

label among all arcs of {w2
hl−1
| 1 ≤ h ≤ n and h 6= m1, . . . ,ml−1} on S2 with

v2il−1
∩ w2

jl−1
6= ∅.

Proof. Note that 4v1il−1
* 4v2il−1

and 4v2il−1
* 4v1il−1

for l ≥ 3. Recall the

step 2 in Lemma 13, we do not need to consider4v1i1 ⊆ 4v2i1 and4v2i1 ⊆ 4v1i1 ,

if j ∈ 4v2i1 −4v1i1 , i.e., j ∈ 4v2i1 and j /∈ 4v1i1 , then w2
j ∩ v21 6= ∅ and for some

i, v2i ∩ w2
m1 = ∅ and v2i ∩ (∪r∈I(wm1 )w

2
r) 6= ∅, see Figure 5. We may assume
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that v2i ∩ w2
r 6= ∅ for some r ∈ I(wm1). So, j > m1 > r. After banding sum,

w2
j1
∩ v2i1 6= ∅ on S2, see Figure 5, and w1

j1
∩ v1i1 = ∅ on S1, see Figure 6.

→

W

W

W
V

V1

2

i

2

j

2

2

2

r

m1

Wj

2

1

V1

2

Wm

2
1

Wr

2

Vi

2

Wj
1

2

1

1

Figure 5. w2
j1
∩ v2i1 6= ∅ on S2

→

W

W

W
V

V1

i

j

r

m1

Wj
1

V1

Wm
1

Wr
Vi

1

1

1 1

1 1

1

1

1

1

1

1

Figure 6. w1
j1
∩ v1i1 = ∅ on S1

Since v2i ∩w2
r 6= ∅ for some r ∈ I(wm1) and r < j, then after banding sum, j

is not the minimal label among all arcs of {w2
h1
| 1 ≤ h ≤ n and h 6= m1} on S2

with v2i1∩w
2
j1
6= ∅ and j /∈ 4v1i1 . If j ∈ (4v1i1∩4v2i1) and |w2

j1
∩v2i1 | > 1, then by

the same argument, j is not the minimal label among all arcs of {w2
h1
| 1 ≤ h ≤ n

and h 6= m1} on S2 with v2i1 ∩ w2
j1
6= ∅, see Figure 7, also, j is not the

minimal label among all arcs of {w1
h1
| 1 ≤ h ≤ n and h 6= m1} on S1 with

v1i1 ∩ w1
j1
6= ∅, see Figure 8. If j ∈ (4v1i1 ∩ 4v2i1) and |w2

j1
∩ v2i1 | ≤ 1, then

by Remarks 9 and 11, |w1
j1
∩ v1i1 | = |w2

j1
∩ v2i1 | = 1. So, m2 ∈ (4v1i1 ∩ 4v2i1)

and |w1
m2

1
∩ v1i1 | = |w2

m2
1
∩ v2i1 | = 1. If j ∈ 4v1i1 − 4v2i1 , then by the same

arguments, j is not the minimal label among all arcs of {w1
h1
| 1 ≤ h ≤ n and

h 6= m1} on S1 with v1i1 ∩ w1
j1
6= ∅ and j /∈ 4v2i1 , and m2 ∈ (4v1i1 ∩4v2i1) and

|w1
m2

1
∩ v1i1 | = |w

2
m2

1
∩ v2i1 | = 1.

By the same arguments, for l ≤ i ≤ p, if j ∈ 4v1il−1
−4v2il−1

, then j is not

the minimal label among all arcs of {w1
hl−1
| 1 ≤ h ≤ n and h 6= m1, . . . ,ml−1}

on S1 with v1il−1
∩ w1

jl−1
6= ∅ and j /∈ 4v2il−1

; if j ∈ (4v1il−1
∩ 4v2il−1

) and

|w1
jl−1
∩v1il−1

| > 1, then by the same argument, j is not the minimal label among

all arcs of {w1
hl−1
| 1 ≤ h ≤ n and h 6= m1, . . . ,ml−1} on S1 with v1il−1

∩w1
jl−1
6=

∅, also, j is not the minimal label among all arcs of {w2
hl−1
| 1 ≤ h ≤ n and
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Figure 7. |w2
j1
∩ v2i1 | > 1 on S2

→

W
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1
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Figure 8. w1
j1

and v1i1 on S1

h 6= m1, . . . ,ml−1} on S2 with v2il−1
∩ w2

jl−1
6= ∅; if j ∈ (4v1il−1

∩ 4v2il−1
)

and |w2
jl−1
∩ v2il−1

| > 1, then by the same argument, j is not the minimal

label among all arcs of {w2
hl−1
| 1 ≤ h ≤ n and h 6= m1, . . . ,ml−1} on S2

with v2il−1
∩ w2

jl−1
6= ∅, also, j is not the minimal label among all arcs of

{w1
hl−1
| 1 ≤ h ≤ n and h 6= m1, . . . ,ml−1} on S1 with v1il−1

∩ w1
jl−1
6= ∅; if

j ∈ (4v1il−1
∩4v2il−1

), |w1
jl−1
∩ v1il−1

| ≤ 1 and |w2
jl−1
∩ v2il−1

| ≤ 1, then |w1
jl−1
∩

v1il−1
| = |w2

jl−1
∩ v2il−1

| = 1. So, ml ∈ (4v1il−1
∩ 4v2il−1

) and |w1
ml

l−1

∩ v1il−1
| =

|w2
ml

l−1

∩v2il−1
| = 1. If j ∈ 4v2il−1

−4v1il−1
, then by the same arguments, j is not

the minimal label among all arcs of {w1
hl−1
| 1 ≤ h ≤ n and h 6= m1, . . . ,ml−1}

on S2 with v1il−1
∩ w1

jl−1
6= ∅ and j /∈ 4v1il−1

, and ml ∈ (4v1il−1
∩ 4v2il−1

) and

|w1
ml

l−1

∩ v1il−1
| = |w2

ml
l−1

∩ v2il−1
| = 1. �

For step l, we consider the arc v1ll−1
on S1. By the proof of Lemma 2.14, we

have:

Lemma 2.15. If ml is the minimal label among all arcs of {w1
jl−1
| 1 ≤ j ≤ n

and j 6= m1, . . . ,ml−1} on S1 with |w1
ml

l−1

∩ v1ll−1
| = 1, then ml is the minimal

label among all arcs of {w2
jl−1
| 1 ≤ j ≤ n and j 6= m1, . . . ,ml−1} on S2 with

|w2
ml

l−1

∩ v2ll−1
| = 1.
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If ml = ∅ and the label vl on FV is “+”, then we label v1ll−1
on S1 with “×”

and label v2ll−1
on S2 with “ ◦ ”; if ml = ∅ and the label vl on FV is “− ”, then

we label v1ll−1
on S1 with “◦” and label v2ll−1

on S2 with “×”. For convenience,

for each arc vkil−1
(l ≤ i ≤ p) and wk

jl−1
(1 ≤ j ≤ n and j 6= m1, . . . ,ml−1) on

Sk (k = 1, 2), we denote them by vkil and wk
jl

. We may assume that vkil and

vkil−1
have the same label, and wk

jl
and wk

jl−1
have the same label. For each

disk Vil−1
(l ≤ i ≤ p or i = x) and Wjl−1

(1 ≤ j ≤ n and j 6= m1, . . . ,ml−1, or

j = x), we denote them by Vil and Wjl . If vkll−1
(k = 1, 2) is retained, we also

denote it by vkll . But in the future banding sum process, we do not consider

vkll .

If ml 6= ∅, the label vl on FV is “ + ”, then by Lemma 2.5, we may assume
that the label wml on FV is “ − ”. By Lemma 2.15 and the same argument
as above (see (I1)), after banding sum, we label v1ll−1

on S1 with “ × ”, label

w1
ml

l−1

on S1 with “◦”, label v2ll−1
on S2 with “◦”, and label w2

ml
l−1

on S2 with

“×”; if m1 6= ∅, the label vl on FV is “−”, then by Lemma 2.5, we may assume
that the label wml on FV is “ + ”. By Lemma 2.15 and the same argument
as above (see (I2)), after banding sum, we label v1ll−1

on S1 with “ ◦ ”, label

w1
ml

l−1

on S1 with “ × ”, label v2ll−1
on S2 with “ × ”, and label w2

ml
l−1

on S2

with “ ◦ ”. If the arc vkll−1
(resp. wk

ml
l−1

) on Sk (k = 1, 2) is labelled with “ ◦ ”,

then we denote it by vkll (resp. wk
ml

l

), but in the future banding sum process,

we do not consider it. By the same argument as in Lemmas 2.6 and 2.8, after
banding sum, we have:

Lemma 2.16. There are four sets of pairwise disjoint arcs {vkil | l + 1 ≤ i ≤
p} ∪ {vkil | 1 ≤ i ≤ l and vkil is labelled with “ ◦ ”} and {wk

jl
| 1 ≤ j ≤ n and

j 6= m1, . . . ,ml} ∪ {wk
jl
| j = m1, . . . ,ml and wk

jl
is labelled with “ ◦ ”} on Sk

(k = 1, 2), and four sets of pairwise disjoint disks {Vil | the label vi is “ + ”
and l + 1 ≤ i ≤ p} ∪ {Vxl

} in V 1, {Wjl | the label wj is “ + ”, 1 ≤ j ≤ n and
j 6= m1, . . . ,ml} ∪ {Wxl

} in W 1, {Vil | the label vi is “− ” and l + 1 ≤ i ≤ p}
in V 2, and {Wjl | the label wj is “− ”, 1 ≤ j ≤ n and j 6= m1, . . . ,ml} in W 2,
satisfying the following conditions:

(1) If Vil lies in V 1 and Wjl lies in W 1, then Vil ∩ F 1
V = (v1il ∩ F

1
V ) ∪r∈I(vi)

(v1rl ∩F
1
V ), Wjl ∩F 1

V = (w1
jl
∩F 1

V )∪r∈I(wj) (w1
rl
∩F 1

V ), Vxl
∩F 1

V = ∪r∈I(v)(v1rl ∩
F 1
V ), Wxl

∩ F 1
V = ∪r∈I(w)(w

1
rl
∩ F 1

V ), Vil ∩Wjl = Vil ∩Wjl ∩ F 1
V , Vil ∩Wxl

=

Vil ∩Wxl
∩F 1

V , Vxl
∩Wjl = Vxl

∩Wjl ∩F 1
V , Vxl

∩Wxl
= {x}∪ (Vxl

∩Wxl
∩F 1

V );
(2) If Vil lies in V 2 and Wjl lies in W 2, then Vil ∩ F 2

V = (v2il ∩ F
2
V ) ∪r∈I(vi)

(v2rl∩F
2
V ), Wjl∩F 2

V = (w2
jl
∩F 2

V )∪r∈I(wj) (w2
rl
∩F 2

V ), Vil∩Wjl = Vil∩Wjl∩F 2
V .

For step p, as in Lemma 2.16, after banding sum, we obtain three sets
of pairwise disjoint arcs {vkip | 1 ≤ i ≤ p and vkip is labelled with “ ◦ ”} and

{wk
jp
| 1 ≤ j ≤ n and j 6= m1, . . . ,mp} ∪ {wk

jp
| j = m1, . . . ,mp and wk

jp
is
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labelled with “ ◦ ”} on Sk (k = 1, 2), and three sets of pairwise disjoint disks
{Vxp

} in V 1, {Wjp | the label wj is “+”, 1 ≤ j ≤ n and j 6= m1, . . . ,mp}∪{Wxp
}

in W 1, and {Wjp | the label wj is “− ”, 1 ≤ j ≤ n and j 6= m1, . . . ,mp} in W 2,
satisfying the following condition:

(∗) If Wjp lies in W 1, then Wjp ∩ F 1
V = (w1

jp
∩ F 1

V ) ∪r∈I(wj) (w1
rp ∩ F 1

V ),

Vxp ∩ F 1
V = ∪r∈I(v)(v1rp ∩ F 1

V ), Wxp ∩ F 1
V = ∪r∈I(w)(w

1
rp ∩ F 1

V ), Vxp
∩Wjp =

Vxp ∩Wjp ∩ F 1
V , Vxp ∩Wxp = {x} ∪ (Vxp ∩Wxp ∩ F 1

V ).

For each arc wk
jp

(1 ≤ j ≤ n and j 6= m1, . . . ,mp) on Sk (k = 1, 2), if the

label wj on FV is “ + ”, then we label w1
jp

on S1 with “× ”, and label w2
jp

on

S2 with “ ◦ ”; if the label wj on FV is “− ”, then we label w1
jp

on S1 with “ ◦ ”,

and label w2
jp

on S2 with “ × ”. For each r ∈ I(v), by (5) in Proposition 2.3,

the label v1rp on S1 is “ − ”. Then, v1rp is labelled with “ ◦ ”. Hence, v1rp is

retained. So, Vxp is a properly embedded disk in V 1. For each r ∈ I(w), by

(6) in Proposition 2.3, the label w1
rp on S1 is “− ”. Then, w1

rp is labeled with

“ ◦ ”. Hence, w1
rp is retained. So, Wxp is a properly embedded disk in W 1.

Since both v1rp and w1
rp are retained, v1rp ∩w

1
rp = ∅. By (∗), Vxp

∩Wxp
= x. So,

M1 = V 1 ∪S1 W 1 is stabilized. �

By Proposition 2.4, Theorem 1.2 holds. �
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