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A NOTE ON PROOF OF GORDON’S CONJECTURE

Kun Du

ABSTRACT. In this paper, we show a proof of Gordon’s Conjecture by
using Qiu’s labels and two new labels.

1. Introduction

All 3-manifolds in this paper are assumed to be compact and orientable. All
surfaces in 3-manifolds are assumed to be orientable.

Let M be a 3-manifold. If there is a closed surface S which cuts M into
two compression bodies V and W with S = 0, W = 0,V then we say M has
a Heegaard splitting, denoted by M = V Ug W; and S is called a Heegaard
surface of M. If there are essential disks B C V and D C W such that
OB = 0D (resp. 90BN OD = (), then M = V Ug W is said to be reducible
(resp. weakly reducible); otherwise, M = V Ug W is said to be irreducible
(resp. strongly irreducible). If there are essential disks B C V and D C W
such that |[BN D| =1, then M =V Ug W is said to be stabilized; otherwise,
M =V Ug W is said to be unstabilized.

Let M be a 3-manifold, F' be a connected closed surface in M, which cuts
M into two 3-manifolds M; and M,. Suppose that M; = V; Ugs, W; is a
Heegaard splitting of M; (i =1,2). Then, M has a natural Heegaard splitting
M =V UgW called the amalgamation of M; = V3 Ug, Wi and My = VoUg, Wa
along F, see [8]. From this construction, we have g(M) < g(M7)+g(Mz)—g(F).
So, there is an interesting question as follows:

Question 1.1. When M =V Ug W is unstabilized?

If g(F) = 0, then it is the Gordon’s Conjecture ([2]). Bachman ([1]), Qiu
([6]), Qiu and Scharlemann ([7]) give an affirmative answer about this question.
But for generally case, it is not true. There are two counterexamples, such
that g(M) < g(My) + g(Ms) — g(F), see [4] and [9]. In [3], Kabayashi and Qiu
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proved the uniqueness of minimal Heegaard splitting M = V Ug W by using
sufficiently complicated manifolds, i.e., the amalgamation of M; = Vi Ug, W,
and My = Vo Ug, Wy along F. In [5], Lackenby proved the uniqueness of
minimal Heegaard splitting M = V Ug W by using sufficiently complicated
map, i.e., the amalgamation of M; = V3 Ug, W7 and My = Vo Ug, W5 along F.

If g(F) = 0, then S can be isotoped, such that F NS is an essential simple
closed curve on S. Hence, M = V Ug W is the reducible Heegaard splitting
and F is the reducing 2-sphere. So, F cuts V into V! and V2 and cuts W
into W, and W, such that My = VI U W, and My = V2UW,. Let Wi =
W, Usr—o53 B3} (i = 1,2), where B} is a 3-ball. Then, W is a compression body
and M*® = ViUg W' is a Heegaard splitting of M*® with S* = 9,V = 9, W*.
So, M = V Ug W is said to be the connected sum of M! = V! Ugi W' and
M? = V2 Ug W2, In this paper, we show a proof of Gordon’s Conjecture by
using Qiu’s labels in [6] and two new labels as follows:

Theorem 1.2. The connected sum M =V Ug W of M* = V! Ugt W' and
M? = V? Ug> W2 is stabilized if and only if one of M' = V! Ug W' and
M? =V?Ug> W2 is stabilized.

2. The proof of Theorem 1.2

Proof. If one of M' = V! Ugit W' and M? = V2 Ug2 W? is stabilized, then
by the construction of Heegaard splitting of connected sum, M =V Ug W is
stabilized. So, we only prove that if M = V Ug W is stabilized, then one of
M'=V1Ug W' and M? = V2 Ug. W2 is stabilized.

Since M = V Ug W is stabilized, there are two disks Dy C V and Dy C W
such that |Dy N Dw| =1. Let e = Dy N Dy, Fy = FNV and Fiy = FNW,
where F' is the reducing 2-sphere of M = V Ug W. Then Fy is an essential
disk in V' and Fyy is an essential disk in W.

Proposition 2.1. If either Dy N Fy = 0 or Dw N Fyw = (), then one of
M =V1ing W and M? = V? Ng> W2 is stabilized.

Proof. If Dy N Fy = (), then Dy is a properly embedded disk in V! or V2. We
may assume that Dy lies in V1. If Dy N Fyy = (), since |Dy N Dy| = 1, Dy,
is a properly embedded disk in W?!. Hence, M' = V! Ug1 W is stabilized and
Proposition 2.1 holds. So, we may assume that Dy N Fy # 0 and | Dy N Fyy | is
minimal. Hence, each component of Dy N Fyy is an arc on both Dy, and Fyy.
Let S; = S'NS (i = 1,2). Since |Dy N Fyy| is minimal, each component of
8DWﬂS; is an essential arc on S;. Let DI be a subdisk of Dy, which is cut by
Fyy, such that | Dy N D}V | = 1. Since Dy NEFy = (), we can push all components
of 3D N Fy into Sy, after isotopy, still denote it by DIV. Then, DYV is a
properly embedded disk in W' and |Dy N DYV | = 1. So, M! = VIuUg W' is
stabilized and Proposition 2.1 holds.

If Dy N Fy = 0, then Dy is a properly embedded disk in W' or W2. We
may assume that Dy lies in W, If Dy N Fy, = @, then by the same argument
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as above, M!' = V1Ug: W is stabilized and Proposition 2.1 holds. So, we may
assume that Dy N Fy # 0 and |Dy N Fy| is minimal. Hence, each component
of Dy N Fy is an arc on both Dy and Fy, and each component of 9Dy N S; is
an essential arc on S; (i = 1,2). Let DY be a subdisk of Dy, which is cut by
Fy, such that |D} N Dy/| = 1. Then, DY is a properly embedded disk in V1.
Hence, M' = V! Ug1 W is stabilized and Proposition 2.1 holds. O

By Proposition 2.1, we may assume that Dy N Fy # 0, Dy N Fy # 0, both
|Dy N Fy| and | Dy N Fyy| are minimal. Hence, each component of Dy N Fy is
an arc on both Dy and Fy, each component of Dy N Fyy is an arc on both Dy
and Fy, each component of 9Dy N S;- is essential on S;, and each component
of 0Dw N S; is essential on S; (i = 1,2). After isotopy, we may assume that
z = Dy N Dy lies in S’;. Let |Dy N Fy| = p and |Dw N Fiy| = n. Now we
show Qiu’s labels (see [6]) and two new labels for each arc of Dy N Fy on Fy
and Dy, N Fy on Fy, as follows:

For each component e of Dy N Fy on Fy, e cuts Dy into two disks V{,/ and
V:, such that x lies in 8Ve/. Let V. be a subdisk of Dy, which is cut by Fy,
such that 9V, contains e and V., C Ve”, see Figure 3 in [6]. Then, V is a
properly embedded disk in V! or V2. If V, lies in V!, then we label e with
“47:4f V, lies in V2, then we label e with “—7. Similarly, for each component
e of Dy N Fy on Fy, e cuts Dy into two disks We/ and W:, such that x lies
in W,. Let W} be a subdisk of Dy, which is cut by Fyy, such that oW}
contains e and W} C We”. Then, W} is a properly embedded disk in Wll or
W,. If W! lies in W, then we label e with “+ ”; if W} lies in W,, then we
label e with “— 7.

Since |Dy N Fy| = p and |Dw N Fw| = n, we label the arcs of Dy N Fy on
Fy with {v1,...,v,} and label the arcs of Dy N Fy on Fy with {w},...,w,},
such that if V,, €V, and W;:{_ c W;;;, then 7 < k and j < [. So, each subdisk
of Dy which is cut by Fy and Jdoes not contain z is denoted by V,,, (1 <14 < p)
and each subdisk of Dy which is cut by Fy and does not contain x is denoted
by Wi}, (1 < j < n). For convenience, we denote V,, by V; and denote Wllv/ by

J J
le. Let V,, be the subdisk of Dy which is cut by Fy, such that 9V, contains
x, W} be the subdisk of Dy, which is cut by Fyy, such that OW,} contains .

Remark 2.2. Since x lies in Si, each subdisk of Dy which is cut by Fy and lies
in V1, is either V;, where the label v; is “+4 7, or Vj; each subdisk of Dy which
is cut by Fy and lies in V2, is V;, where the label v; is “ — 7; each subdisk of
Dy which is cut by Fy and lies in Wl/, is either le, where the label w; is
“+7 or Wl and each subdisk of Dy which is cut by Fy and lies in WQI, is
le, where the label w; is “ =",

For each component w;- (1 <j<n)of Dw N Fw on Fy, w; is said to be

the dual arc of w; on Fy, if ow; = 8w;. After isotopy, we may assume that
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for each component v; (1 <14 < p) of Dy N Fy on Fy, |w; Nv;| < 1. We may
assume that w; and w; have the same labels. For each subdisk le (1<j<n
or j = z) of Dy which is cut by Fy, we can push each arc w;C of E?le N Fy on
Fy into Fy, such that w;c is replaced by wy on Fy . After isotopy, we denote
it by W;. Then, W; is a properly embedded disk in W* or w2,

So, for each arc v; (1 < ¢ < p) of Dy N Fy on Fy and each dual arc w;
(1 <j <n)of Dw N Fw on Fy, |v; Nw;| < 1. Let I(v;) = {r|v, C 0V; and
v # v}, I(w)) = {r|w, C OW; and w, # w;}, I(v) = {r|v, C 9V, } and
I(w) = {r|w, C OW,}. Then, there are some properties for I(v;), I(w;), I(v),
I(w), Vi, Vy, W; and W, as follows:
Proposition 2.3 ([6]). (1) If r € I(v;), then r < i

(2) if r € I(wj), then r < j;

(3) the label v; is “+7 if and only if the label v, is “ =7 for each r € I(v;);
(4) the label w; is “+7 if and only if the label w, is “—=" for each r € I(w;);
(5) if r € I(v), then the label v, is “—";

(6) if r € I(w), then the label w, is “—";

(1) p € I(w), n € I(w)

(8) there are four sets of pairwise disjoint properly embedded disks {V; |1 <

i < p and the label v; is “+ 7} U{V,} in V1, {V;|1 <i < p and the label v; is
“—7Yin V2, {W; |1 < j < n and the label wj is “+ 7} U {W,} in W', and
{W;|1 < j < n and the label wj is “ — "} in W2, satisfying the following
conditions:

(1) VinFv = vi Ureg(u) vr, WiNFy = wj Uper(uw;) Wr, Va N Fy = Urero)vr,
W, NFy = Ure](w)wT;

(ii) if V; lies in V' and W lies in W, then V,N\W; = V,nW,;NFy, V,NW,, =

(iii) if V; lies in V% and W; lies in W2, then V; N W; =VinW;NFy.

Since Fy cuts V into V! and V2, let FE (k = 1,2) be a copy of Fy, such
that F{; lies in S*, vf be a copy of v; on Fy; and w} be a copy of w; on F{;
(1 <i<p1l<j<mn). Wemay assume that v¥ and v; have the same label,
and w} and w; have the same label. For convenience, vj = v means that both
v} and v? are the copies of v;, and w]l = wj2 means that both w} and w? are
the copies of w;.

Outline of the proof of Theorem 2. By using Qiu’s labels and two new
labels, we band sum disks of {V;|1 < i < p and the label v; is “+ 7} U {V,}
in V! along some arcs obtained from {wi,w},...,wl} on S, band sum disks
of {W;|1 < j < n and the label w; is “+ 7} U {W,} in W! along some arcs
obtained from {v{,v3,...,v;} on S, band sum disks of {V; |1 < i < p and the
label v; is “—7} in V2 along some arcs obtained from {w?, w3,..., w2} on S,
and band sum disks of {W; |1 < j < n and the label w; is “—"} in W? along
some arcs obtained from {v?,v3,...,v2} on S?. Finally, either there are two

disks Dy1 € V! and Dy € W with [Dys N Dyyi| = 1 or there are two disks
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Dy2 C V% and Dy> C W2 with |Dy2 N Dyy2| = 1. So, one of M! = Viug W1
and M? = V2 Ug2 W2 is stabilized.

Proposition 2.4. Either there are two disks Dy1 C V' and Dy C W' with
|Dyr N Dyyi| = 1, where Dy is obtained by banding sum disks of {V;|1 <
i < p and the label v; is “+ "} U{V,} in V' along some arcs obtained from
{wi,wi,...;wl} on S, and Dy is obtained by banding sum disks of {W; |1 <
J < n and the label w; is “+"}U{W,} in W' along some arcs obtained from
{vi, 3, ... ,vé} on St, or there are two disks Dy2 C V2 and Dy2 C W2 with
|Dy2NDyyz2| = 1, where Dy is obtained by banding sum disks of {V; |1 <i<p
and the label v; is “—"} in V2 along some arcs obtained from {w? w3,... w2}
on S?, and Dy is obtained by banding sum disks of {W;|1 < j < n and the
label wj is “ ="} in W? along some arcs obtained from {v3,v3,... ,v2} on S%.

Proof. We consider all arcs {v1,vs,...,v,} of Dy N Fy on Fy in sequence. If
we consider all dual arcs {w1, ws,...,w,} of Dy NFy on Fy in sequence, then
the argument is the same. So, we may assume that p < n. First, we consider v}
on Fy;. Let m' be the minimal label among all arcs of {w; |1 < j <n} on Fy;
with |w}, Noi| = 1. If m' = 0, then for each arc wj (1 <j < n), wiNof =0.
If m" # 0, then |vf Nw! | =1 (1 <m!' <n). Since v} =v? (1 <i<p)and

i

wi = w3 (1< j <n), [vf Nwj| = o] Nw5]. So, m" is the minimal label among
all arcs of {w?| 1 < j < n} on F{ with w2, Nvf| = 1. We may assume that
the label v; on Fy is “+ 7. If the label v; on Fy is “ — 7, then the argument

is the same.

If m* = 0, then for each arc wf (1<j<nk=12), w}“ Nof = (). Since
the label v; on Fy is “+ 7, the label vf (k = 1,2) on F¥ is “+ 7. We label
v} on F. with “ x 7 and label v? on F2 with “o”. The label “ x ” on v}
means that we delete the arc v} on F{., and the label “o” on v} means that
we retain the arc vf on Fy}. For each arc v} (2 < <p)and w} (1 <j <n),
since vZ Nvf = @ and wjz Nv? = (), there is no influence on v? when we consider
v} and w?. Hence, the label “o” on v means that we retain the arc v{ on
FZ. For convenience, for each arc vF (2 < i < p) and wf (1<j<n)onSk
(k = 1,2), we denote them by v} and w¥ . We may assume that vf and v}
have the same label, and wfl and w;“ have the same label. For each disk V;
2<i<pori=x)and W; (1<j<norj=ux), we denote them by V;, and
Wj,. Since v? is retained, we also denote it by fufl. But in the future banding
sum process, we do not consider v3 .

If m! # 0, then o] Nw! | =i Nw?,|=1.

Lemma 2.5. If the label w1 on Fy is “+7, then M' = V1 Ug W' is

stabilized.

Proof. Since the label v; on Fy is “47, Vi is a properly embedded disk in V'.
For each r € I(v1), by (1) in Proposition 2.3, r < 1. So, I(v1) = 0. By (i) of
(8) in Proposition 2.3, Vi N FY, = v] Uyer(uy) vy = v]. Since the label w1 on
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Fy is “+7, W1 is a properly embedded disk in W1. For each r € I(w,,1), by
(2) in Proposition 2.3, » < m!. By the minimality of m!, wl Nv} = 0. By (8)
in Proposition 2.3, [Vi N W1 | = [ViNW, NFy| = |op 0 (w) i Urerw )W) =
loi Nwl .| =1. So, M* = V! Ugs W is stabilized. O

By Lemma 2.5, Proposition 2.4 holds. So, we may assume that the label
Wt on Fy is “—7. Then, W,,: is a properly embedded disk in W?2. Now we
label vi and w! , on Fy;, and label vf and w?, on F{, respectively:

(I) Label v; and w} , on F}.

By (8) in Proposition 2.3, Vi Nwl .| = |(ViNFy)Nwk .| = vf Nw) | = 1.
If there is a disk V; of {V; | the label v; is “+” and 2 <4 < p} U{V,} in V!
with 9V, N w#l # (), then we band sum V; and k copies of V; along w}nl in
some order, where [0V, N w}nl| = k. After banding sum and isotopy, we obtain
a properly embedded disk in V! and denote it by V;,. So, Vi, NV} = () and
OV, N (wk, Uwi) = 0. If there is a disk V; of {V;| the label v; is “+” and
2 <i<pyu{V,}in V! with 9V N w}nl = (), then we do nothing and denote
it by Vj,. After isotopy, we obtain a collection of mutually disjoint disks {V;, |
the label v; is “+” and 2 <4 < p} U{V,,} in V. For each disk W, of {W; |
the label w; is “4+7,1 < j <mnand j # m'} U{W,} in W', we do nothing and
denote it by Wi,. So, we obtain a collection of mutually disjoint disks {Wj, |
the label w; is “+7,1<j <nand j #m!'} U{W,, } in W1

This procedure can be viewed as for each arc v} (2 <i < p), if [v; Nw) | =1,
then we band sum v} and a copy 9V of 9V} along w}nl, where V] is a copy of
Vi and 9V{ N FL lies between vi and v}. After banding sum and isotopy, we
obtain a new arc and denote it by vill. Before banding sum, if there is an arc
v} (k # 1,i) with [vi Nw}! .| = 1, such that v lies between v{ and v}, then v}
lies between OVY N FL and v}. Let OV} be a copy of OV4, where V¥ is a copy
of V4, such that V¥ N F lies between OVY N F and vi. Then, we band sum
v} and OV} along w}nl. After banding sum and isotopy, we obtain a new arc
and denote it by v,ﬁl, such that v,il N vill = (), see Figure 1. If vil N w}nl =0,
then we do nothing and denote it by v}, .

After banding sum and isotopy, we obtain a collection of mutually disjoint
arcs {v;,| 2 <4 < p} on 8. Also, for each arc wj (1 < j < n and j # m')
before banding sum, we do nothing and denote it by w]l1
So, there is a collection of mutually disjoint arcs {w]l1| 1<j<nandj#m'}
on S'. Hence, v} and w} (2 < i < p;1 < j < nandj# m') represent the
arcs before banding sum, vill and w}l represent the arcs after banding sum. We
may assume that v; and v}, (2 <4 < p) have the same label, and w} and w},
(1 <j <nandj#m') have the same label.

For each arc v}, (2 <i<p)and wj (1<j<nandj#m"), v N(viU
w) ) =0, Jv, Nwj | <1and |v), NFy| < 2. Since the label vf on Fy, is “+7
and the label w) , on F}}, is “—7, we label v{ on F}, with “x” and label w’ , on

after banding sum.
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FIGURE 1. Band sum subdisk V; and V; in V! along w} .
(2<i<p)

F; with “o”, see Figure 1. The label “ x ” on v{ means that we delete the arc
v on F}, the label “o” on w! , means that we retain the arc w) , on F{,. For
each arc vill (2<i<p)and w]l1 (1<j <mnandj#m!), since vil1 N w}nl =0
and wjl»l Nw! . = 0, there is no influence on w'! , when we consider vill and wjl.l.
Hence, the label “o” on w}nl means that we retain the arc w}nl. So, we also
denote it by w}n%, but in the future banding sum process, we do not need to
consider it.
By (8) in Proposition 2.3 and the argument as above, we have:

Lemma 2.6. There are two sets of pairwise disjoint properly embedded disks
{Vi, | the label v; is “+ 7" and 2 < i < p}U{Vy, } in V1, and {W;, | the label
wjis “4+7,1<j<nandj#m'}U{W,} in W, satisfying the following
conditions:

(1) Vi1 NFy = (Uz'll N F\l/) UTGI(’Ui) ('071‘1 ﬁF‘l/), Wj1 N F\l/ = wjl'l Urel(wj) w71‘17
Vo, N Fy = UTef(U)(vil NEFY), We, NF, = Uv"eI(w)wil;

(2) Vvil ijl :Wl ﬁVle mF\lﬂ Vvh ﬁVV!JL’l = Vvil szl mF\l/i VII ﬂle =
Vi, "Wy, NFL, Ve, "W, = {2} U (Vy, NW,, N FL).

Remark 2.7. For each 2 < i < p, 1 < j < nand j # m?, if |v} ﬂw}n1| =1
and [w} N (vi Uv})| = 1 before banding sum, then |vj, Nwj | = 1 after banding
sum; if [v} Nw!,| =1 and |wj1 N (vl Uv})| = 0 or 2 before banding sum, then
vj, Nwj, = 0 after banding sum and isotopy; if vf Nw} , = @ before banding
sum, then v}, Nwj | = [v} Nw}], see Figure 2. After banding sum and isotopy,
i, Nwj | < 1.

(I2) Label v? and w2, on F2.

Since the label w,,1 on Fy is “—”, W,,,1 is a properly embedded disk in W2.
For each r € I(w,,1), by (2) in Proposition 2.3, » < m!. By the minimality of
m', v Nw2 = 0. By (8) in Proposition 2.3, |W,,1 Nv}| = |(W,,1 N FZ)Nov?| =
(w2 Urerw, 1) wi) Noi| = w2, Nof| = 1. If there is a disk W, of {W} | the
label w; is “="; 1 < j < nand j # m!} in W? with OW;Nv? # 0, then we band
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|
1

v

FIGURE 2. v} Nw} and v} Nwj (2<i<p;1<j<nandj#m')

sum W, and k copies of W,,1 along v} in some order, where [OW, Nv?| = k.
After banding sum and isotopy, we obtain a properly embedded disk in T2
and denote it by W;,. So, W, N W,,1 =0 and 0W,, N (w?, Uv?) = (. If there
is a disk W, of {W;| the label w; is “—"; 1 < j < n and j # m'} in W?
with OW; Nv? = (), then we do nothing and denote it by Wj,. After isotopy,
we obtain a collection of mutually disjoint disks {Wj, | the label w; is “ —7;
1 <j<mnandj#m'}in W2 For each disk V; of {V;| the label v; is “—”
and 2 < i < p} in V2, we do nothing and denote it by V;,. So, we obtain a
collection of mutually disjoint disks {V;, | the label v; is “ —” and 2 <14 < p}
in V2.

This procedure can be viewed as for each arc w]2 (1 <j<mnandj#mb,
if |w? Nwi| = 1, then we band sum w3 and a copy (“)Wil1 of OW,,: along v?,
where ngl is a copy of W,,: and one component of 8Will N FZ which is a
copy of wfnl lies between wfnl and wf After banding sum and isotopy, we
obtain a new arc and denote it by wjzl. Before banding sum, if there is an arc

wi (k # m',j) with |wi Nv?| = 1, such that w} lies between w?

2 and w3,

then, w,% lies between one component of GWZI 1 N F‘Q, which is a copy of wfnl
and wj2 Let 8W7’fll be a copy of OW,,1, where Wffll is a copy of W,,1, such
k

that one component of OW

component of 8VV£1 , N FZ which is a copy of wfnl and w}. Then, we band sum
w} and OWF, along v}. After banding sum and isotopy, we obtain a new arc
and denote it by wf , such that wi N wjz-1 = (), see Figure 3. If wj2 Nv? =0,
then we do nothing and denote it by w]zl.

After banding sum and isotopy, we obtain a collection of mutually disjoint
arcs {wf |1 < j <nand j# m'} on 5. For each arc v} (2 < i < p) before
2»21 after banding sum. Then,
there is a collection of mutually disjoint arcs {1)121 | 2 <i<p}on S Hence, v?
and wj2 (2<i<p;1<j<nandj#m') represent the arcs before banding

sum, 11?1 and wjz1 represent the arcs after banding sum. So, we may assume

, N F} which is a copy of w?, lies between one

banding sum, we do nothing and denote it by v
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v

FIGURE 3. Band sum subdisk W; and W,,1 in W? along v?
(1<j<nandj#m')

that v and Ui21 (2 < i < p) have the same label, and wj2 and w]Q-1 (1<j<n
and j # m') have the same label.

For each arc w3 (1 <j <mnandj#m')onS? w? N(wiUw?,)=0. Since
the label w2, on Fg is “—" and the label v{ on F} is “+ 7, we label w2, on
FZ with “x ” and label v} on F2 with “o”, see Figure 3. The label “ x 7 on
w2, means that we delete the arc w?, on FZ, the label “o” on v{ means that
we retain the arc v¥ on F2. For each arc vfl (2 <i<p)and wjz-1 (1<j<n
and j # m?), since 01-21 Nv? = 0 and wjz1 Nv? = 0, there is no influence on
7 and w3 . Hence, the label “o” on v{ means that we
retain the arc v?. So, we also denote it by ’U%l, but in the future banding sum
process, we do not need to consider it.

By (8) in Proposition 2.3 and the argument as above, we have:

v} when we consider v

Lemma 2.8. There are two sets of pairwise disjoint properly embedded disks
{Vi, | the label v; is “—7 and 2 < i < p} in V2, and {W;, | the label w; is “—";
1<j<nandj#m'} in W2, satisfying the following conditions:
(1) Vil N FX%’ = Uizl UreI(vi) Ugl} le n FX%’ = (wgzl N FX2/) UrEI(wj) (wgl N Fa)v
(2) Vi, ijl =V ﬂle mFXZ/'

w

V

3

FIGURE 4. v?ﬂwjz. andviﬁw]z-1 2<i<p;1<j<nandj#m')
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Remark 2.9. By the argument as above, for each arc vfl (2 <i<p)and w?l
(1 <j<nandj# m') on S? if wjz» Nv? = 0, then wjzl lies in Fg and
lw? Nof| < 15 0f [wi Nef| = 1 and v7 N (UTd(w pwy) = 0, then |w? N

v | < 15 if [wi nof| = 1 and v N (Uperw ywy) # 0, then [w? Nof| > 1.
Particularly, if \w Nv2 | > 2, then j is not the minimal label among all arcs
of {w} |1 <1 <mn and I # ml} on S? with w]2 Nv? # 0. Specifically, if
wfﬁvl (), then \wh No2 | = \wj No?l; if |w Nv?| = 1, |v? ﬂ(wj Uw? )| = 1
and [v7 N (Urer(w, yw;)| = k, then |wf N v2 = k+1; if |w]2 Nnoil =
w7 N (wi Uw?,,)| = 0 or 2 and [v7 N (Urerw ,)wi)| = k, then [w? Nof | = k
after isotopy, see Figure 4.
Remark 2.10. By (I1), (I2), if m* = 0 and the label v; on Fy is “+ 7, then we
label v{ on Fy{> with “x” and label v} on FZ with “o”; if m! = () and the label
vy on Fy is “—7, then we label v] on F}, with “o” and label v? on F2 with
“x 75 if m! #£ ), the label v; on Fy is “+ 7, by Lemma 2.5, we may assume
that the label w,,1 on Fy is “—7, then after banding sum, we label v} on F};
with “ x 7, label w} . on Fj, with “o”, label v{ on F} with “o”, and label
w2, on FZ with “ x 7; if m* # (), the label vy on Fy is “ =7, by Lemma 2.5,
we may assume that the label w,,: on Fy is “+ 7, then after banding sum, we
label v{ on F{, with “o”, label w!, on F, with “ x 7, label v} on F2 with
“x 7, and label wfnl on F‘% with “

Let Avy = {j| v} Nwk #0} 2<i<p;1<j<nandj#m'k=12).

Then, we have:
Lemma 2. 11 For2<i<p, ifm' =0 and the label vi on Fy is “+7, then
Avl = ; if mt # 0, the label vi on Fy is “+7 and the label w,,1 on Fy
is “— then Av C Av? ", and if j € Avil Avil, then j is not the minimal
label among all arcs of {wl 11<1<nandl#m'} on S* with v} N wf—l £ ().

Pmof Before banding sum, v} = v2 (1 <i < p) and w = w (1 <j<n) If
m! = (), then we do not need to band sum. So, U = vfl and w] = wfl (2 <
i <p;1 <j<njk=1,2). Since [v; Nwj| = [vf Nw3l, v}, Nwj | = |[v} Nw
(2<i<p;1<j<n). Hence, sz‘l Av“ (2<i S p). So, we may assume
that m! # (). There are two cases:
Case 1 in Lemma 2.11. vl-1 N w}nl =0 for some 2 < i < p.

Since v} = v? and w}nl = w?nl, v? ﬂwml = 0. By (I2), v =
ol Nwt, =0, by (1), v} = v{. By Remark 2.7, for each 1<1<nand
I #m', |v} Nw} | < 1. Hence, for each J € Avh, lwj, N}, | = )
since wj = wj, and vf =), |v} ﬂw1| = 1. So, [v7 Nw}| = 1 If w? Novf =0,
then by (I2), w} = w},. Since v} = v7, [v] ﬂw2 | = 1. Hence, j € Av? . So,
Av} C Avf . T Jw? Nnof| = 1, since [v] ﬂ( w?, Uw3)| =1, by Remark 2.9,
w3 N7 | = k+ 1, where k = [vf N (Urel(wml)wrﬂ. Hence, j € Av?. So,
Avill - Av?l.
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1

1 1 _ : 1 _ 1 IR |
For each j ¢ Av} , v} Nwj, = 0. Since v = v; and w] = wj, v; Nw;

=0
So, v} Nw} = 0. If w? Nwvi = 0, then by (I2), wi = w},. Since v] = vfé)

z )

w? Nv; = 0. Hence, j ¢ Av,. If [wi Nwi| = 1, since vy N (w3 Uw?,,) ,
by Remark 2.9, [v7 Nw3 | = k, where k = [v} N (Upres(w, ywi)|. If k =0,
then j ¢ Av?. If k > 0, then j € Av? — Awv} . Since |w} Nvf| = 1, by the
minimality of m! and (2) in Proposition 2.3, j > m! > r, where r € I(w,1).
Since k > 0, there is r € I(wml) with |v2 N w2| = 1. By the minimality of m!,
w2 Ny =0. By (I3), w? =w? . Since v? =07, [v} Nw2 | =1. Since j > r, j
is not the minimal label among all arcs of {wf |1 <1<nandl#m'} on S
with o7 Nw? # 0.

Case 2 in Lemma 2.11. |[v} Nw] | =1 for some 2 <i < p.
Since v} = v? and 'LU,I,L1 = wml, |v? mel\ = 1. Since v} ﬂw =
v} # vj,. By Remark 2.7, for each 1 <1 < n and [ # m!, v}, ﬂwll1| <
Hence for each j € Avj, lwj Nv} | =1. By Remark 2.7, |w ﬂ(vl Uo})| =
So, w3 ﬂ(v1Uv)|=1. Ifw Nof = 0 and [w? Nvf| = 1, then by (I3
w? = w? . Since v} = v}, |w? ﬁ v? | = 1. Then, j € Av?. So, Av} C Avi.
If |w? ﬂvﬂ =1 and wj Nv; =0, then [v N (w2, Uw3)| = 1. By Remark 2.9,
w3, ﬂv2| =k+1, Where k= [0} N (Urer(w, yws)|. Hence, j € Av? . So,
Av} C AV
For cach J ¢ Av“, wj, Nvj, = 0. By Remark 2.7, [w} N (vi Uvj) =0 or 2.
So, |w? N (v} U v )| =0or 2. Ifw N (vf Uvf) = 0, then by (), wi = w3 .
Since vf =7, w; Ny = 0. Hence J ¢ Avil I Jwin (vf UeY)| = 2,
then [vf N (w2, Uw?)| = 2. By Remark 2.9, [w3 N} | = k, where k =
[v2 N (UreI(wml))wf\. If k=0, then j ¢ Av?. If k > 0, then j € Av — Av} .
By the same argument as in Case 1 in Lemma 2.11, j is not minimal label
among all arcs of {w}, |1 <1 <nandl#m'}on S with v}, Nw} #0. O

Remark 2.12. By the same proof as in Lemma 2.11, for 2 <4 < p, if m' = () and
the label v1 on Fy is “—7", then Avill = Av?l; if m! # 0, the label v; on Fy is

” and the label w,,,1 on Fy is “+7, then Av? C Av} ,andif j € Av} —Av7
then j is not the minimal label among all arcs of {w] |1 <1 <n and l #m'}
on St with v} ﬂwh # .

Second, we consider the arc vj on S*.

Lemma 2.13. If m? is the minimal label among all arcs of {wjl1 [1<j<n
and j #m'} on S with |w! , Ny | =1, then m? is the minimal label among
1
all arcs of {wJQ1 |1<j<nandj#m'} on S?* with |w?,Nv3 | =1.
‘1
Proof. By Lemma 2.11, if m* = 0, then Avy, = Avj ; if m! # 0, then Avj, C

A’UQI, and if j € Av3 — Avj , then j is not the minimal label among all arcs
of {wf |1 <l <mnandl#m'} on S? with v3, ﬂw  # 0. So, if m? is minimal
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2

in Avj, then m? is minimal in Av3 . By Remark 2.7, |w} , N3 | = 1. By
1

Remark 2.9, [w?, Nv3 | = 1. O
1

By the same proof as above (see Remark 2.10), if m? = () and the label v,
on Fy is “+7, then we label v3, on S' with “x” and label v3 on S? with “o”;
if m? = ) and the label v, on Fy is “ — 7, then we label v%l on S with “o”
and label v3 on S? with “ x ”. For convenience, for each arc vf (3 <i < p)
and wfl (1<j<nandj#m') onS* (k=1,2), we denote them by v} and
wfz. We may assume that vi and vfl have the same label, and wé’?z and wé?l
have the same label. For each disk V;, (3 <i<pori=z)and W;, (1<j<n
and j # m', or j = z), we denote them by V;, and W;,. If v§ (k =1,2) is
retained, we also denote it by v§2. But in the future banding sum process, we
do not consider v§, .

If m? # (), the label vo on Fy is “+ 7, by Lemma 2.5, we may assume that
the label w,,> on Fy is “—", then V5, is a properly embedded disk in V! and
Wmf is a properly embedded disk in W2. For each disk V;, (the label v; on Fy
is “+7;3<i<pori=uz)in V! if V, ﬂw}nf = (), then we do nothing and
denote it by V;,; if Vi, N w}n% # (), then by the same argument as in (I1), we
band sum V;; and V5, along win%, after banding sum, we denote it by V;,, such
that Vi, N V3, = 0 and 8V, N (v3, U w}n%) = (). For each disk W;, (the label
wjon Fyis “4+7;1<j<nandj#m!' m? orj=xz)in W' we do nothing
and denote it by W;,. For each disk Wj, (the label w; is “—=";1 < j <n
and j # m',m?) in W2, if W;, Nv3 = 0, then we do nothing and denote it
by Wj,; if Wj, N3, # 0, then by the same argument as in (I3), we band sum
Wj, and W2 along v%l, after banding sum, we denote it by Wj,, such that
Wi, N\ W,,2 = 0 and W), N (v3, U wiﬁ) = (). For each disk V;, (the label v; is
“—73<i<p)in V? we do nothing and denote it by V;,.

Correspondingly, for each arc vf’l and wfl 3<i<pl<j<nand
j #m',m%*k =1,2) on S*¥ before banding sum, we denote them by v¥ and

k

wj, after banding sum. Now we label vy, on S' with “ x 7, label w! , on S*
1

with o7, label v3, on S? with “o” and label w?, on S? with “ x ”. Since
1
both w}nQ and v%l are retained, for convenience, we denote them by w}ng and
1 2

v%z. But in the future banding sum process, we do not need to consider them.
So, we obtain four sets of pairwise disjoint properly embedded disks {V;, | the
label v; is “+7 and 3 < i < p} U{V,,} in V!, {W,, | the label w; is “+ 7,
1 <j<nandj#m'm?}U{W,}in Wl {V,,| the label v; is “—" and
3 <i<p}in V2 and {Wj, | the label w; is “ =7, 1 < j <n and j # m', m?}
in W2, satisfying the same properties as in Lemmas 2.6 and 2.8.

If m? # (), the label v, on Fy is “— 7, by Lemma 2.5, we may assume that
the label w,,> on Fy is “+ 7, then Vs, is a properly embedded disk in V2 and
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W2 is a properly embedded disk in W, For each disk Wj, (the label w; is
“+7:1<j<nandj#m'm? orj=x)in W if Wj, ﬁv%l = (), then we do
nothing and denote it by Wj,; if W, N v%l # (), then by the same argument as
in (I2), we band sum Wj, and W, along v3,, after banding sum, we denote it
by Wj,, such that W;, "W,z = () and OW;, N (vg, Uwin%) = (). For each disk V;,

(the label v; is “+7; 3 <4 S pori=x)in V!, we do nothing and denote it by
V;,. For each disk V;, (the label v; is “—7; 3 <i <p)in V2 if V;, ﬂwfn% =0,
then we do nothing and denote it by V,; if V;; N wfnf # (b, then by the same
argument as in (I1), we band sum V;, and V5, along wfnff, after banding sum,
we denote it by V;,, such that Vi, NV, = 0 and dV;, N (v3, U wfn%) = (). For
each disk W;, (the label w; is “—7; 1 <j <n and j #m!,m?) in W2, we do
nothing and denote it by W,.

Correspondingly, for each arc vfl and w;?l B3<i<pl<j<mnand
j # m',m?k = 1,2) on S* before banding sum, we denote them by ”Z and

k

wf, after banding sum. Now we label vy on S' with “o”, label w!, on S!
1

with “ x 7, label v% on S? with “ x 7 and label w? m? on S? with “o”. Since
both v2 and w? 3 are retained, we denote them by v2 and w? 3 But in the

future banding sum process, we do not need to consider them. So we obtain
four sets of pairwise disjoint properly embedded disks {V;, | the label v; is “+4”
and 3 < i < p}U{V,,} in V1, {W,,| the label w; is “+7, 1 < j < n and
j#mtm?yu{W,,} in Wl {V, | the label v; is “—” and 3 < i < p} in V?,
and {W;, | the label w; is “—7,1 < j <n and j # m', m?} in W2, satisfying
the same properties as in Lemmas 2.6 and 2.8.

We continue this procedure as above, there are p steps. For each step [
(1 <1 < p), by the same argument as above, before banding sum, there are four
sets of pairwise disjoint arcs {vf |1 <i < p}u{vf_ | 1<i<l-landof  is
labelled with “o”} and {w} |1 <j<mandj#m! ... . m~Yufwh [j=

mb,...,m'" and w¥ _ is labelled with “o0”} on S* (k = 1,2). Let Avf | =

1
{loi_ nuwh  #0}(<i<pl<j<nandj#m'. .. m" Yk=12).
Then, we have:
Lemma 2.14. Forl < i < p, if j € Av” L Avflil,
minimal label among all arcs of {w}, |1 <h<nandh#m',...,m~} on

St with vill_ +0;ifj € Av“ — Av}l_l, then j is not the minimal

le 1

label among all arcs of {w}, |1 < h <mn and h#m',....m'~} on S* with
vp_ Nw?_ #0.

-1

Proof. Note that Av}, ¢ Av?  and Av? ¢ Avj_ for I > 3. Recall the

-1 -1
step 2 in Lemma 13, we do not need to consider Av}, C Av? and Av} C Av},
if § 6 Av2 Avl ie. j € AU-Q and j ¢ Avl then w2 Nv? # () and for some
i, vZNuw, =0 and 07 N (Urer(w, ) Wh) # (Z) see Flgure 5. We may assume

then j is not the
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that vZ Nw? # O for some r € I(wy,1). So, j > m! > r. After banding sum,

2 ~.2 2 e T 1 1 _ 1 ocon B
w: N7 # 0 on S?, see Figure 5, and w; Nv;, =0 on S, see Figure 6.

2 2 2
FIGURE 5. w} Nvf # 0 on S

W W,

V, \'A
W' — | W

FIGURE 6. wj, Nv} =0 on S

Since vZ Nw?2 # ) for some 7 € I(w,,1) and r < j, then after banding sum, j
is not the minimal label among all arcs of {w,%1 |1 <h<mnandh#m'} on S?

Sh 02 (o2 ; 1 ; 1 2 2 2
with v7 Nw3 # @ and j ¢ Av} . If j € (Avy, NAv; ) and [wf, N7 | > 1, then by
the same argument, j is not the minimal label among all arcs of {wj |1 <h <n
and h # m'} on S? with Ui21 N w?l #+ ), see Figure 7, also, j is not the
minimal label among all arcs of {w}l1 |1 < h<nandh # m'} on St with
vi, Nwj, # 0, see Figure 8. If j € (Avj, N Av}) and |w3 Nv7 | < 1, then
by Remarks 9 and 11, |wj N} | = [0} N7 | = 1. So, m?* € (Avj, N Av})
and |w71n§ Noj | = |w72n% No7| = 1. If j € Av} — Av?, then by the same

arguments, j is not the minimal label among all arcs of {w}L1 |1 <h<nand
h#m'} on S* with v} Nwj # 0 and j ¢ Av?, and m? € (Avj, N Av}) and

217
|win% No | = |w72n% Nl | =1

By the same arguments, for [ < i < p, if j € Av}  — Av?

Q-1 ir—17
the minimal label among all arcs of {w,l”_1 |[1<h<mnand h#m! ..., m~1}
on S' with v/  Nwj  # 0and j ¢ Avy_;if j € (Avj,_ N A} ) and
lwj,  Nvj,_ | > 1, then by the same argument, j is not the minimal label among

all arcs of {w}, |1 <h<nandh#m', . ..,m"'}onS" withv) Nwj  #

-1 Ji—1
(), also, j is not the minimal label among all arcs of {10}2”71 |1 < h <n and

then j is not
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2

vvrvlz Wﬁv:
W %" Wi
wl
|
% :

FIGURE 7. |w} Nv}|>1on S?

1

T _;ﬂ
<

1)

< =
W7

=
‘\(
<

FIGURE 8. wj and v} on S

h # mb ...,m='} on S? with v? ﬂw?l_l £ 0;if 5 € (Avl N Av? )

i—1 i1 i—1

and |w]2»l71 N U%,J > 1, then by the same argument, j is not the minimal
label among all arcs of {w} |1 < h < n and h # m',...,m"'} on S?

with v Nwj  # 0, also, j is not the minimal label among all arcs of

{w}l”71 | 1< h<nandh 7& mla"'vml_l} on S' with ’Uillfl N wﬂl-l—l 7& 07 if

je(Du,  NAY ) w  Nul [ <Tand [wj_  Nol | <1, then |w) N

i1 i1 Ji—1 Ji—1

vf | =1w?_ 0wl | =1 So,m'e (Avf NAv; ) and ‘w}ni,l Nl | =

w2, nNvg_ |=1.1fj € Av}  —Av;
1

: .., then by the same arguments, j is not
mj_ -1 1 -1

the minimal label among all arcs of {11},1”71 |[1<h<mnand h#m! ...,m~1}
on S? with v Nwj,_ #0and j ¢ Avl ,and m! € (Avj,  NAv]_ ) and

|w71nLl Nol | = |w72nL1 no?_ |=1 O

1
li—1

For step I, we consider the arc v on S'. By the proof of Lemma 2.14, we

have:

Lemma 2.15. If m! is the minimal label among all arcs of {w}F1 |[1<j<n

and j #m',...,m!=1} on S* with |w!, Nwv}_ | =1, then m! is the minimal
1—1 -

label among all arcs of {wii1 [1<j<mnandj#m'....,m~1} on S? with

|wfn§71 nvy_|=1.



714 K. DU

If m' = (0 and the label v; on Fy is “+7, then we label Ullli1 on St with “x”
and label ”l%q on S? with “o”; if m! = () and the label v; on Fy is “—7, then
we label v}, on S' with “o” and label v} on 52 with “x”. For convenience,
for each arc vf | (I <i<p)andw; (1<j<nandj#m'...,m"")on
S% (k = 1,2), we denote them by vj and w}. We may assume that v} and

vf_ have the same label, and w}“l and wfl _, have the same label. For each

disk V;, , I<i<pori=z)and W;,_, (1<j<mandj#m! ...,m~1 or
j = x), we denote them by V;, and Wj,. If vl’jil (k =1,2) is retained, we also
denote it by vlkl. But in the future banding sum process, we do not consider
o

If m! # 0, the label v; on Fy is “+ 7, then by Lemma 2.5, we may assume
that the label w,,,;; on Fy is “ —”. By Lemma 2.15 and the same argument
as above (see (I1)), after banding sum, we label v} ~on S with “ x 7, label

w}nl on S with “o”, label vlzl L on 52 with “o”, and label wfnl on S? with
-1 - -1

“x7:if m' # (), the label v; on Fy is “—7, then by Lemma 2.5, we may assume
that the label w,, on Fy is “+ 7. By Lemma 2.15 and the same argument
as above (see (I3)), after banding sum, we label v} on S' with “ o7, label

w}nl on S with “ x 7, label Ul2l ,on S? with “ x 7, and label wfnl on S?
-1 - -1

with “o”. If the arc vf_ (resp. w®, )on S* (k= 1,2) is labelled with “o”,
- -1
then we denote it by vf[ (resp. wfn 1), but in the future banding sum process,
, 1
we do not consider it. By the same argument as in Lemmas 2.6 and 2.8, after
banding sum, we have:

Lemma 2.16. There are four sets of pairwise disjoint arcs {vfl [l+1<i<
pyU{vf |1 < i <1 and v} is labelled with “ o7} and {w} |1 < j < n and
j#ml,... o m}u {wfl |j =m! ...,m! and wft is labelled with “o”} on S*
(k = 1,2), and four sets of pairwise disjoint disks {V;, | the label v; is “+7
and 1 +1 <i <pyU{Vy} in V1, {W; | the label w; is “+7, 1< j <n and
jg#EmL o omyu{W,, ) in WL, {V;, | the label v; is “—" and I +1 < i < p}
in V2, and {W;, | the label w; is “—",1<j <n and j #m!,...,m'} in W2,
satisfying the following conditions:

(1) If V;, lies in V' and W), lies in W', then Vi, N Fy; = (vj, N ) Urer(o)
(v, V), Wy, NFy = (w), N FY) Urerw,) (Wi, NFY), Vay 0 F = Urery (0, N
FL), Wo, N FY = Uperuy(wh, NEL), Vi NWy, =V N W, N E, Vi, N Wy, =
Vi, "Wy, VL, Vo MWy, = Vo, "W, NFY, Vi, "Wy, = {2} U (Ve "Wy, NEFL);

(2) If V;, lies in V% and Wi, lies in W?2, then V;, N F2 = (’Ui N F‘z/) Urer(v:)
(W2 NFG), Wy, NF = (w3 NF)Urer(w,) (Wi NFR), Vi, "W, = Vi, "W, NE.

For step p, as in Lemma 2.16, after banding sum, we obtain three sets
of pairwise disjoint arcs {vf |1 < i < p and v is labelled with “o”} and
{w;?p|1 <j<mnandj#m'...,mP}U {wfp|j =m!,...,mP and wfp is
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labelled with “o0”} on S* (k = 1,2), and three sets of pairwise disjoint disks
{Vo,}in VI {W; |thelabel w;is “4+7,1 < j <nandj #m',... mPIU{W,, }
in W1, and {W;, | the label w; is “=",1 < j <mnand j # ml,...,mP}in W2,
satisfying the following condition:

() If W;, lies in W, then W; N Fj, = (w]lp N FY) Urerw,) (wip N EL),

Vi, N Fy = Upery(vy, N Fy), Wo, NFY = Uperw)(wy, N EY), Ve, NW;, =
Vo, "W, NG, Vo, "W, = {2} U (Vy, "W, NFY).

For each arc wé?p (1<j<mandj#m!...,mP)on S* (k=1,2), if the
label w; on Fy is “+ 7, then we label wjl-p on S with “ x 7, and label wf—p on

S? with “o”; if the label w; on Fy is “—", then we label wjl-p on St with “o”
and label w? on S? with “ x 7. For each r € I(v), by (5) in Proposition 2.3,

-]-7
the label v} on S'is “—7. Then, v, is labelled with “o”. Hence, v, is

retained. So, V,, is a properly embedded disk in V1. For each r € I(w), by
(6) in Proposition 2.3, the label w%p on S'is “—7. Then, w} is labeled with

Tp
@ 1

o”. Hence, w, is retained. So, W, is a properly embedded disk in wt.

Tp
Since both vip and wip are retained, vﬁp ﬁw,{p =0. By (%), Vo, "W, = x. So,
M! =V Ug W is stabilized. O
By Proposition 2.4, Theorem 1.2 holds. O
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