DOI QR코드

DOI QR Code

Laboratory Experiment: Synthesis and Characterization of 4-Methyl-N-(phenylacetyl)benzenesulfonamide through Cu(I)-Catalysis

  • 투고 : 2018.02.12
  • 심사 : 2018.03.02
  • 발행 : 2018.06.20

초록

A three-component coupling reaction of phenylacetylene, p-toluenesulfonyl azide, and water through copper catalysis is described to provide knowledge of spectroscopy and catalytic reactions and to introduce current research topics in organic chemistry for second-year undergraduate students. In the presence of stoichiometric amounts of phenylacetylene, p-toluenesulfonyl azide, and triethylamine, the reaction was performed with 4 mol% CuCl in water as the sole solvent and was completed in 1.5 h. A practical purification method and recrystallization of the crude reaction mixture resulted in the rapid isolation of the desired product with yields of 42~65%. Students characterized 4-methyl-N-(phenylacetyl)benzenesulfonamide by using melting-point determination, infrared spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. This experimental procedure and spectroscopic data analysis will serve as a platform for students to apply classroom knowledge in practical state-of-the-art research.

키워드

참고문헌

  1. Nobel Prizes and Laureates in Chemistry. https://www.nobelprize.org/nobel_prizes/chemistry/laureates/(accessed April 2016).
  2. Crabtree, R. H. The Organometallic Chemistry of the Transition Metals, 5th ed.; John Wiley & Sons: Hoboken, NJ, 2009; p 1.
  3. Spessard, G. O.; Miessler, G. L. Organometallic Chemistry, 2nd ed.; Oxford University Press: UK, 2010; p 1.
  4. Hegedus, L. S.; Soderberg, B. C. G. Transition Metals in the Synthesis of Complex Organic Molecules, 3rd ed.; University Science Books: Sausalito, CA, 2010; p 1.
  5. Petrone, D. A.; Ye, J.; Lautens, M. Chem. Rev. 2016, 116, 8003. https://doi.org/10.1021/acs.chemrev.6b00089
  6. Souillart, L.; Cramer, N. Chem. Rev. 2015, 115, 9410. https://doi.org/10.1021/acs.chemrev.5b00138
  7. Wencel-Delord, J.; Droge, T.; Liu, F.; Glorius, F. Chem. Soc. Rev. 2011, 40, 4740. https://doi.org/10.1039/c1cs15083a
  8. Giri, R.; Shi, B. F.; Engle, K. M.; Maugel, N.; Yu, J. Q. Chem. Soc. Rev. 2009, 38, 3242. https://doi.org/10.1039/b816707a
  9. American Association for the Advancement of Science (AAAS). Benchmarks for Science Literacy; Oxford University Press: New York, 1993.
  10. Osborne, J.; Dillon, J. Science Education in Europe; The Nuffield Foundation: London, 2008.
  11. Schwarz, C. V.; Reiser, B. J.; Davis, E. A.; Kenyon, L.; Acher, A.; Fortus, D.; Shwartz, Y.; Hug, B.; Krajcik, J. J. Res. Sci. Teach. 2009, 46, 632. https://doi.org/10.1002/tea.20311
  12. Nakamura, E.; Sato, K. Nat. Mater. 2011, 10, 158. https://doi.org/10.1038/nmat2969
  13. Guo, X. X.; Gu, D. W.; Wu, Z.; Zhang, W. Chem. Rev. 2015, 115, 1622. https://doi.org/10.1021/cr500410y
  14. McCann, S. D.; Stahl, S. S. Acc. Chem. Res. 2015, 48, 1756. https://doi.org/10.1021/acs.accounts.5b00060
  15. Allen, S. E.; Walvoord, R. R.; Padilla-Salinas, R.; Kozlowski, M. C. Chem. Rev. 2013, 113, 6234. https://doi.org/10.1021/cr300527g
  16. Glinski, M.; Ulkowska, U.; Iwanek, E. J. Chem. Educ. 2016, 93, 1623. https://doi.org/10.1021/acs.jchemed.5b00849
  17. Lipshutz, B. H.; Boskovic, Z.; Crowe, C. S.; Davis, V. K.; Whittemore, H. C.; Vosburg, D. A.; Wenzel, A. G. J. Chem. Educ. 2013, 90, 1514. https://doi.org/10.1021/ed300893u
  18. Ison, E. A.; Ison, A. J. Chem. Educ. 2012, 89, 1575. https://doi.org/10.1021/ed300243s
  19. Mendes, D. E.; Schoffstall, A. M. J. Chem. Educ. 2011, 88, 1582. https://doi.org/10.1021/ed101140z
  20. Hansen, T. V.; Wu, P.; Sharpless, W. D.; Lindberg, J. G. J. Chem. Educ. 2005, 82, 1833. https://doi.org/10.1021/ed082p1833
  21. Williamson, K. L.; Masters, K. M. Macroscale and Microscale Organic Experiments, 6th ed.; Cengage Learning: Belmont, CA, 2011; p 490.
  22. Kono, H.; Hooz, J. Org. Synth. 1973, 53, 77. https://doi.org/10.15227/orgsyn.053.0077
  23. McKee, J. R.; Kauffman, J. M. J. Chem. Educ. 1982, 59, 695. https://doi.org/10.1021/ed059p695
  24. Williamson, K. L.; Masters, K. M. Macroscale and Microscale Organic Experiments, 6th ed.; Cengage Learning: Belmont, CA, 2010; p 617.
  25. Cho, S. H.; Chang, S. Angew. Chem. Int. Ed. 2007, 46, 1897. https://doi.org/10.1002/anie.200604358
  26. Yoo, E. J.; Bae, I.; Cho, S. H.; Han, H.; Chang, S. Org. Lett. 2006, 8, 1347. https://doi.org/10.1021/ol060056j
  27. Cho, S. H.; Yoo, E. J.; Bae, I.; Chang, S. J. Am. Chem. Soc. 2005, 127, 16046. https://doi.org/10.1021/ja056399e
  28. Davies, H. M. L.; Bois, J. D.; Yu, J. Q. Chem. Soc. Rev. 2011, 40, 1855. https://doi.org/10.1039/c1cs90010b
  29. Labinger, J. A.; Bercaw, J. E. Nature 2002, 417, 507. https://doi.org/10.1038/417507a
  30. E-Eros Encyclopedia of Reagents for Organic Synthesis. http://onlinelibrary.wiley.com/doi/10.1002/047084289X.rt141/abstract (accessed April 2017).