DOI QR코드

DOI QR Code

Proteome Characterization of Sorghum (Sorghum bicolor L.) at Vegetative Stage under Waterlogging Stress

토양 과습 조건하에서 수수 잎의 단백질 양상

  • Yun, Min Heon (Department of Crop Science, Chungbuk National University) ;
  • Jeong, Hae-Ryong (Department of Crop Science, Chungbuk National University) ;
  • Yoo, Jang-Hwan (Department of Crop Science, Chungbuk National University) ;
  • Roy, Swapan Kumar (Department of Crop Science, Chungbuk National University) ;
  • Kwon, Soo-Jeong (Department of Crop Science, Chungbuk National University) ;
  • Kim, Joo-Ho (Biological Research Team, NongHyup Chemical Research Institute) ;
  • Chun, Hyen Chung (Crop Production Technology Research Division, National Institute of Crop Science, RDA) ;
  • Jung, Ki Yuol (Crop Production Technology Research Division, National Institute of Crop Science, RDA) ;
  • Cho, Seong-Woo (Department of Crop Science and Biotechnology, Chonbuk National University) ;
  • Woo, Sun-Hee (Department of Crop Science, Chungbuk National University)
  • 윤민헌 (충북대학교 식물자원학과) ;
  • 정해룡 (충북대학교 식물자원학과) ;
  • 유장환 (충북대학교 식물자원학과) ;
  • ;
  • 권수정 (충북대학교 식물자원학과) ;
  • 김주호 (농협케미컬 연구소) ;
  • 전현정 (국립식량과학원 남부작물부) ;
  • 정기열 (국립식량과학원 남부작물부) ;
  • 조성우 (전북대학교 작물생명과학과) ;
  • 우선희 (충북대학교 식물자원학과)
  • Received : 2017.10.30
  • Accepted : 2018.03.13
  • Published : 2018.04.30

Abstract

The study was performed to explore the molecular changes in the vegetative stage (3-and 5-leaf) of sorghum under waterlogging stress. A total of 74 differentially expressed protein spots were analyzed using LTQ-FT-ICR MS. Among them, 12 proteins were up-regulated and 3 proteins were down-regulated. Mass spectrometry (MS) results showed that about 50% of the proteins involved in various metabolic processes. The level of protein expression of malate dehydrogenase and glyceraldehyde-3-phosphate dehydrogenase related to carbohydrate metabolic process increased in both 3 and 5-leaf stage under waterlogging stress. These proteins are known to function as antistress agents against waterlogging stress. The expression of oxygen-evolving enhancer protein 1 protein related to photosynthesis was slightly increased in the treated group than in the control group, however the expression level was increased in the 5-leaf stage compared to the 3-leaf stage. Probable phospholipid hydroperoxide glutathione peroxidase protein and superoxide dismutase protein related to response to oxidative stress showed the highest expression level in 5-leaf stage treatment. This suggests that the production of reactive oxygen species by the waterlogging stress was the most abundant in the 5-leaf treatment group, and the expression of the antioxidant defense protein was increased.

밭작물 중의 하나인 수수의 재배기간 중 장기간 지속되는 토양의 과습 상태는 수수의 생장 저하를 야기하는 요소로서 작용한다. 수수 잎을 이용한 수수의 3엽기, 5엽기 과습 처리시의 단백질을 동정한 결과 74개의 단백질들을 동정하였다. LTQ-FI-ICR MS로 분석한 결과 carbohydrate metabolic process, metabolic process, cellular metabolic compound salvage와 관련된 단백질들이 약50% 정도를 차지하며, 과습 스트레스를 받을 때 영향을 미치는 것으로 보였다. Carbohydrate metabolic process와 관련된 malate dehydrogenase 단백질과 glyceraldehyde-3-phosphate dehydrogenase 단백질은 과습 스트레스를 받았을 경우 3엽기와 5엽기 모두 단백질 발현양이 증가하였다. 이러한 단백질들은 과습 스트레스에 대한 antistress 기능을 하는 단백질로 알려져 있는데, 과습 스트레스에 반응하여 해당 단백질들의 발현양이 증가한 것으로 사료된다. 광합성과 관련된 oxygen-evolving enhancer protein 1 단백질은 대조구에서 보다 처리구에서 발현양이 다소 증가한 것을 볼 수 있었다. 또한, 3엽기에 비해서 5엽기에서 발현양이 증가한 것을 확인할 수 있었다. Response to oxidative stress와 관련된 probable phospholipid hydroperoxide glutathione peroxidase 단백질과 superoxide dismutase 단백질 모두5엽기 처리구에서 가장 많은 발현량을 보였다. 이는 과습 스트레스에 의한 활성산소 발생이 5엽기 처리구에서 가장 많았고, 이에 따라 항산화방어기작을 하는 단백질의 발현이 증가한 것으로 여겨졌다.

Keywords

References

  1. Ahmed, S., E. Nawata, M. Hosokawa, Y. Domae and T. Sakuratani. 2002. Alterations in photosynthesis and some antioxidant enzymatic activities of mungbean subjected to waterlogging. Plant Sci. 163(1):117-123. https://doi.org/10.1016/S0168-9452(02)00080-8
  2. Ahsan, N., D.G. Lee, S.H. Lee, K.Y. Kang, J.D. Bahk, M.S. Choi and B.H. Lee. 2007. A comparative proteomic analysis of tomato leaves in response to waterlogging stress. Physiol. Plant. 131(4):555-570. https://doi.org/10.1111/j.1399-3054.2007.00980.x
  3. Bowler, C., M.V. Montagu and D. Inze. 1992. Superoxide dismutase and stress tolerance. Annu. Rev. Plant Biol. 43(1):83-116.
  4. Crawford, R.M.M. 1978. Metabolic adaptation to anoxia: In Hook, D.D. and R.M.M. Crawford (eds.), Plant Life in Anaerobic Environments. Ann Arbor, MI: Ann Arbor Science pp. 119-136.
  5. Daugherty, C.J. and M.E. Musgrave. 1994. Characterization of populations of rapid-cycling Brassica rapa L. selected for differential waterlogging tolerance. J Exp. Bot. 8(3):385-392.
  6. Hoganson, C.W. and G.T. Babcock. 1997. A metalloradical mechanism for the generation of oxygen from water in photosynthesis. Science 277(5334):1953-1956. https://doi.org/10.1126/science.277.5334.1953
  7. Kim, H.R. 2014. Differential Expression of Proteins from Diploid and Tetraploid Tissue Culture of Platycodon grandiflorum. Department of Agronomy, MS Thesis, Chungbuk National Univ., Korea. pp. 3-8 (in Korean).
  8. Kim, K.A., H.M. Kamal, K.H. Shin, J.S. Choi, H.Y. Heo and S.H. Woo. 2010. Large-scale proteomics investigation in wild relatives (A, B, D genomes) of wheat. Acta Biochim. Biophys. Sin. 42(10):709-716. https://doi.org/10.1093/abbs/gmq079
  9. Komatsu, S., Y. Nanjo and M. Nishimura. 2013. Proteomic analysis of the flooding tolerance mechanism in mutant soybean. J Proteomics 79:231-250. https://doi.org/10.1016/j.jprot.2012.12.023
  10. Pandey, A. and M. Mann. 2000. Proteomics to study genes and genomes. Nature 10(6788):837-846.
  11. Rabilloud, T. 2002. Two-dimensional gel electrophoresis in proteomics: Old, old fashioned, but it still climbs up the mountains. Proteomics 8(1):3-10.
  12. Rocha, M., F. Licausi, W.L. Araújo, A. Nunes-Nesi, L. Sodek, A.R Fernie and J.T. van Dongen. 2010. Glycolysis and the tricarboxylic acid cycle are linked by alanine amino- transferase during hypoxia induced by waterlogging of Lotus japonicus. Plant Physiol. 152(3):1501-1513. https://doi.org/10.1104/pp.109.150045
  13. Sugimoto, M. and K. Takeda. 2003. Structure and function of a phospholipid hydroperoxide glutathione peroxidase-like protein from barley. Journal of Molecular Catalysis B: Enzymatic 23(2):397-403. https://doi.org/10.1016/S1381-1177(03)00104-8
  14. Woo, S.H., H.S. Kim, B.H. Song, C.W. Lee, Y.M. Park, S.K. Jong and Y.G. Cho. 2003. Rice proteomics: A functional analysis of the rice genome and applications. J Plant Biotechnol. 11(3):281-291 (in Korean).
  15. Yachandra, V.K., V.J. DeRose, M.J. Latimer, I. Mukerji, K. Sauer and M.P. Klein. 1993. Where plants make oxygen - a structural model for the photosynthetic oxygen-evolving manganese cluster. Science 5(5108):675-679.
  16. Yoon, S.T., I.H. Jeong, T.K. Han, Y.J. Kim, J.B. Yu, G. Yang, M.H. Ye, S.W. Baek and K.W. Kim. 2016. Evaluation of crop characteristics of sorghum (Sorghum bicolor L.) germplasm for the selection of excellent resources. Korean J. Plant Res. 29(4):479-494 (in Korean). https://doi.org/10.7732/kjpr.2016.29.4.479