DOI QR코드

DOI QR Code

Evaluation of the parameters affecting the Schmidt rebound hammer reading using ANFIS method

  • Toghroli, Ali (Department of Civil Engineering, Faculty of Engineering, University of Malaya) ;
  • Darvishmoghaddam, Ehsan (Department of Civil Engineering, Faculty of Engineering, University of Malaya) ;
  • Zandi, Yousef (Department of Civil Engineering, Islamic Azad University) ;
  • Parvan, Mahdi (Department of Civil Engineering, Islamic Azad University) ;
  • Safa, Maryam (Department of Civil Engineering, Faculty of Engineering, University of Malaya) ;
  • Abdullahi, Muazu Mohammed (Department of Civil Engineering, Jubail University College, Royal Commission of Jubail and Yanbu) ;
  • Heydari, Abbas (Young Researchers and Elite Club, Ardabil Branch, Islamic Azad University) ;
  • Wakil, Karzan (University of Human Development) ;
  • Gebreel, Saad A.M. (Department of Civil Engineering, Faculty of Engineering, Omar Al-Mukhtar University) ;
  • Khorami, Majid (Facultad de Arquitectura y Urbanismo, Universidad Tecnologica Equinoccial)
  • Received : 2015.11.22
  • Accepted : 2018.01.18
  • Published : 2018.05.25

Abstract

As a nondestructive testing method, the Schmidt rebound hammer is widely used for structural health monitoring. During application, a Schmidt hammer hits the surface of a concrete mass. According to the principle of rebound, concrete strength depends on the hardness of the concrete energy surface. Study aims to identify the main variables affecting the results of Schmidt rebound hammer reading and consequently the results of structural health monitoring of concrete structures using adaptive neuro-fuzzy inference system (ANFIS). The ANFIS process for variable selection was applied for this purpose. This procedure comprises some methods that determine a subsection of the entire set of detailed factors, which present analytical capability. ANFIS was applied to complete a flexible search. Afterward, this method was applied to conclude how the five main factors (namely, age, silica fume, fine aggregate, coarse aggregate, and water) used in designing concrete mixture influence the Schmidt rebound hammer reading and consequently the structural health monitoring accuracy. Results show that water is considered the most significant parameter of the Schmidt rebound hammer reading. The details of this study are discussed thoroughly.

Keywords

References

  1. Akcayol, M.A. (2004), "Application of adaptive neuro-fuzzy controller for SRM", Adv. Eng. Softw., 35(3), 129-137. https://doi.org/10.1016/j.advengsoft.2004.03.005
  2. Aldair, A.A. and Wang, W.J. (2011), "Design an intelligent controller for full vehicle nonlinear active suspension systems", Int. J. Smart Sens. Intell. Syst., 4(2), 224-243.
  3. Amasaki, S. (1991), "Estimation of strength of concrete structures by the rebound hammer", CAJ Proc. Cement Concete, 45, 345-351.
  4. Andalib, Z., Kafi, M.A. and Bazzaz, M. (2010), "Using hyper elastic material for increasing ductility of bracing", 1st Conference of Steel & Structures and 2nd Conference on Application of High-Strength Steels in Structural Industry, Steel & Structures, Tehran, Iran, December.
  5. Andalib, Z., Kafi, M.A., Kheyroddin, A. and Bazzaz, M. (2011), "Investigation on the ductility and absorption of energy of steel ring in concentric braces", 2nd Conference of Steel and Structures, Steel and Structures.
  6. Andalib, Z., Kafi, M.A., Kheyroddin, A. and Bazzaz, M. (2014), "Experimental investigation of the ductility and performance of steel rings constructed from plates", J. Constr. Steel Res., 103, 77-88. https://doi.org/10.1016/j.jcsr.2014.07.016
  7. Ansari, M., Ahmad, M., Singh, R. and Singh, T. (2015), "Correlation between Schmidt hardness and coefficient of restitution of rocks", J. Afri. Earth Sci., 104, 1-5. https://doi.org/10.1016/j.jafrearsci.2015.01.005
  8. Arabnejad Khanouki, M.M., Ramli Sulong, N.H. and Shariati, M. (2011), "Behavior of through beam connections composed of CFSST columns and steel beams by finite element studying", Adv. Mater. Res., 168, 2329-2333.
  9. Bazzaz, M. (2010), "Seismic behavior of off-centre braced frame with circular element in steel frame design", Semnan University.
  10. Bazzaz, M., Andaliba, Z., Kafib, M.A. and Kheyroddin, A. (2015), "Evaluating the performance of OBS-CO in steel frames under monotonic load", Earthq. Struct., 8(3), 699-712. https://doi.org/10.12989/eas.2015.8.3.699
  11. Bazzaz, M., Kafi, M.A., Andalib, Z. and Esmaeili, H. (2011), "Seismic behavior of off-centre bracing frame", 6th National Congress on Civil Engineering.
  12. Bazzaz, M., Kheyroddin, A., Kafi, M.A. and Andalib, Z. (2012), "Evaluation of the seismic performance of off-centre bracing system with ductile element in steel frames", Steel Compos. Struct., 12(5), 445-464. https://doi.org/10.12989/scs.2012.12.5.445
  13. Bazzaz, M., Kheyroddin, A., Kafi, M.A.and Andalib, Z. (2012), "Modeling and analysis of steel ring devised in off-centric braced frame with the goal of improving ductility of bracing systems", Iran Scientific and Industrial Researches Organization, Tehran, Iran.
  14. Bazzaz, M., Darabi, M.K., Little, D.N. and Garg, N.K. (2018), "A straightforward procedure to characterize nonlinear viscoelastic respinse of asphalt concrete at high temperatures", Transportation Research Record: Journal of the Transportation Research Board.
  15. Breccolotti, M. and Bonfigli, M.F. (2015), "I-SonReb: an improved NDT method to evaluate the in situ strength of carbonated concrete", Nondestr. Test. Eval., 30(4), 327-346. https://doi.org/10.1080/10589759.2015.1046872
  16. Brozovsky, J. (2014), "High-strength concrete-NDT with rebound hammer: influence of aggregate on test results", Nondestr. Test. Eval., 29(3), 255-268. https://doi.org/10.1080/10589759.2014.926897
  17. Caglayan, B.O., Ozakgul, K. and Tezer, O. (2012), "Assessment of a concrete arch bridge using static and dynamic load tests", Struct. Eng. Mech., 41(1), 83-94. https://doi.org/10.12989/sem.2012.41.1.083
  18. Castellano, G. and Fanelli, A.M. (2000), "Variable selection using neural-network models", Neurocomput., 31(1), 1-13. https://doi.org/10.1016/S0925-2312(99)00146-0
  19. Dastranj, M.R., Ebroahimi, E., Changizi, N. and Sameni, E. (2011), "Control DC motorspeed with adaptive neuro-fuzzy control (ANFIS)", Austr. J. Bas. Appl. Sci., 5(10),1499-1504.
  20. Dieterle, F., Busche, S. and Gauglitz, G. (2003), "Growing neural networks for a multivariate calibration and variable selection of time-resolved measurements", Analytica Chimica Acta, 490(1), 71-83. https://doi.org/10.1016/S0003-2670(03)00338-6
  21. Grigorie, T. and Botez, R. (2009), "Adaptive neuro-fuzzy inference system-based controllers for smart material actuator modelling", Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 223(6), 655-668. https://doi.org/10.1243/09544100JAERO522
  22. Hamidian, M., Shariati, A., Khanouki, M.M.A., Sinaei, H., Toghroli, A. and Nouri, K. (2012), "Application of Schmidt rebound hammer and ultrasonic pulse velocity techniques for structural health monitoring", Sci. Res. Essay., 7(21), 1997-2001.
  23. Hamidian, M., Shariati, M., Arabnejad Khanouki, M. and Shariati, A. (2011), "Assessment of high strength and light weight aggregate concrete properties using ultrasonic pulse velocity technique", Int. J. Phys. Sci., 6(22), 5261-5266.
  24. Hamidian, M., Shariati, M., Arabnejad, M. and Sinaei, H. (2011), "Assessment of high strength and light weight aggregate concrete properties using ultrasonic pulse velocity technique", Int. J. Phys. Sci., 6(22), 5261-5266.
  25. Jalali, A., Daie, M., Nazhadan, Kazemi-Arbat, S.V.M.P. and Shariati, M. (2012), "Seismic performance of structures with pre-bent strips as a damper", Int. J. Phys. Sci., 7(26), 4061-4072.
  26. Jang, J.S. (1993), "ANFIS: Adaptive-network-based fuzzy inference system", Syst. Man Cyber. IEEE Tran., 23(3), 665-685. https://doi.org/10.1109/21.256541
  27. Khandelwal, M., Singh, T. and Kumar, S. (2005), "Prediction of blast induced ground vibration in opencast mine by artificial neural network", Ind. Min. Eng. J., 44, 23-29.
  28. Khanouki, M.M.A., Ramli Sulong, N.H., Shariati, M. and Tahir, M.M. (2016), "Investigation of through beam connection to concrete filled circular steel tube (CFCST) column", J. Constr. Steel Res., 121, 144-162. https://doi.org/10.1016/j.jcsr.2016.01.002
  29. Khorami, M., Alvansazyazdi, M., Shariati, M., Zandi, Y., Jalali, A. and Tahir, M. (2017), "Seismic performance evaluation of buckling restrained braced frames (BRBF) using incremental nonlinear dynamic analysis method (IDA)", http://www.dspace.uce.edu.ec/handle/25000/14271.
  30. Khorami, M., Khorami, M., Motahar, H., Alvansazyazdi, M., Shariati, M., Jalali, A. and Tahir, M. (2017), "Evaluation of the seismic performance of special moment frames using incremental nonlinear dynamic analysis", http://www.dspace.uce.edu.ec/handle/25000/13039.
  31. Khorramian, K., Maleki, S., Shariati, M., Jalali, A. and Tahir, M. (2017), "Numerical analysis of tilted angle shear connectors in steel-concrete composite systems", Steel Compos. Struct., 23(1), 67-85. https://doi.org/10.12989/scs.2017.23.1.067
  32. Khorramian, K., Maleki, S., Shariati, M. and Ramli Sulong, N.H. (2015), "Behavior of tilted angle shear connectors", PLoS ONE, 10(12), e0144288. https://doi.org/10.1371/journal.pone.0144288
  33. Kibar, H. and Ozturk, T. (2015), "Determination of concrete quality with destructive and non-destructive methods", Comput. Concrete, 15(3), 473-484. https://doi.org/10.12989/cac.2015.15.3.473
  34. Kurnaz, S., Cetin, O. and Kaynak, O. (2010), "Adaptive neurofuzzy inference system based autonomous flight control of unmanned air vehicles", Exp. Syst. Appl., 37(2), 1229-1234. https://doi.org/10.1016/j.eswa.2009.06.009
  35. Kwong, C., Wong, T. and Chan, K.Y. (2009), "A methodology of generating customer satisfaction models for new product development using a neuro-fuzzy approach", Exp. Syst. Appl., 36(8), 11262-11270. https://doi.org/10.1016/j.eswa.2009.02.094
  36. Manoj, S.B.A. (2011), "Identification and control of nonlinear systems using soft computing techniques", Int. J. Model. Optim., 1(1), 24.
  37. Mansouri, I., Shariati, M., Safa, M., Ibrahim, Z., Tahir, M. and Petkovic, D. (2017), "Analysis of influential factors for predicting the shear strength of a V-shaped angle shear connector in composite beams using an adaptive neuro-fuzzy technique", J. Intell. Manufact., 1-11.
  38. Mirmiran, A. and Wei, Y. (2001), "Damage assessment of FRPencased concrete using ultrasonic pulse velocity", J. Eng. Mech., 127(2), 126-135. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:2(126)
  39. Mohammadhassani, M., Nezamabadi-Pour, H., Suhatril, M. and Shariati, M. (2013), "Identification of a suitable ANN architecture in predicting strain in tie section of concrete deep beams", Struct. Eng. Mech., 46(6), 853-868. https://doi.org/10.12989/sem.2013.46.6.853
  40. Mohammadhassani, M., Nezamabadi-pour, H., Suhatril, M. and Shariati, M. (2014), "An evolutionary fuzzy modelling approach and comparison of different methods for shear strength prediction of high-strength concrete beams without stirrups", Smart Struc. Syst., 14(5), 785-809. https://doi.org/10.12989/sss.2014.14.5.785
  41. Mohammadhassani, M., Suhatril, M., Shariati, M. and Ghanbari, F. (2014), "Ductility and strength assessment of HSC beams with varying of tensile reinforcement ratios", Struct. Eng. Mech., 48(6), 833-848. https://doi.org/10.12989/SEM.2013.48.6.833
  42. Moustapha, H. and Krishnamurti, R. (2001), "Arabic calligraphy: A computational exploration", Math. Des., 294-306.
  43. Petkovic, D., Issa, M., Pavlovic, N.D., Pavlovic, N.T. and Zentner, L. (2012), "Adaptive neuro-fuzzy estimation of conductive silicone rubber mechanical properties", Exp. Syst. Appl., 39(10), 9477-9482. https://doi.org/10.1016/j.eswa.2012.02.111
  44. Petkovic, D., Issa, M., Pavlovic, N.D., Zentner, L. and Cojbasic, Z. (2012), "Adaptive neuro fuzzy controller for adaptive compliant robotic gripper", Exp. Syst. Appl., 39(18), 13295-13304. https://doi.org/10.1016/j.eswa.2012.05.072
  45. Ravi, S., Sudha, M. and Balakrishnan, P. (2011), "Design of intelligent self-tuning GA ANFIS temperature controller for plastic extrusion system", Model. Simul. Eng., 2011, Article No. 12.
  46. Rubene, S. and Vilnitis, M. (2015), "Use of the Schmidt rebound hammer for non destructive concrete structure testing in field", Czasopismo Techniczne.
  47. Safa, M., Shariati, M., Ibrahim, Z., Toghroli, A., Baharom, S.B., Nor, N.M.and Petkovic, D. (2016), "Potential of adaptive neuro fuzzy inference system for evaluating the factors affecting steelconcrete composite beam's shear strength", Steel Compos. Struct., 21(3), 679-688. https://doi.org/10.12989/scs.2016.21.3.679
  48. Schumacher, T., Shariati, A., Miller, T., Gupta, R. and Walker, K. (2017), "Development of virtual visual sensor applications for wood structural health monitoring", J. Test. Eval., 46(1), 24-32.
  49. Selcuk, L. and Yabalak, E. (2015), "Evaluation of the ratio between uniaxial compressive strength and Schmidt hammer rebound number and its effectiveness in predicting rock strength", Nondestr. Test. Eval., 30(1), 1-12. https://doi.org/10.1080/10589759.2014.977789
  50. Shah, S., Sulong, N.R., Shariati, M. and Jumaat, M. (2015), "Steel rack connections: Identification of most influential factors and a comparison of stiffness design methods", PloS One, 10(10), e0139422. https://doi.org/10.1371/journal.pone.0139422
  51. Shariati, A. and Schumacher, T. (2015), "SHM using Eulerianbased virtual visual sensors: Introduction of a new black-andwhite target for improved SNR", Struct. Hlth. Monit., Doi: 10.12783/SHM2015/203.
  52. Shariati, M. (2008), "Assessment building using none-destructive test techniques (ultra sonic pulse velocity and Schmidt rebound hammer)", Universiti Putra Malaysia.
  53. Shariati, M. (2013), "Behaviour of C-shaped shear connectors in stell concrete composite beams, Jabatan Kejuruteraan Awam, Fakulti Kejuruteraan", Universiti Malaya.
  54. Shariati, M., Ramli-Sulong, N.H., KH, M.M.A., Shafigh, P. and Sinaei, H. (2011), "Assessing the strength of reinforced concrete structures through ultrasonic pulse velocity and schmidt rebound hammer tests", Scientif. Res. Essay., 6(1), 213-220.
  55. Shariati, M., Ramli Sulong, N.H. and Arabnejad Khanouki, M.M. (2010), "Experimental and analytical study on channel shear connectors in light weight aggregate concrete", Proceedings of the 4th International Conference on Steel & Composite Structures, Sydney, July.
  56. Shariati, M., Ramli Sulong, N.H., Arabnejad Khanouki, M.M., Shafigh, P. and Sinaei, H. (2011), "Assessing the strength of reinforced concrete structures through ultrasonic pulse velocity and Schmidt rebound hammer tests", Scientif. Res. Essay., 6(1), 213-220.
  57. Shariati, M., Ramli Sulong, N.H., Shariati, A. and Khanouki, M.A. (2015), "Behavior of V-shaped angle shear connectors: experimental and parametric study", Mater. Struct., 49(9), 3909-3926.
  58. Singh, J., Verma, A., Singh, T. and Maheshwa, S. (2016), "A study of soft computing models for prediction of longitudinal wave velocity", Arab. J. Geosci., Doi: 10.1007/s12517-12015-12115-x.
  59. Singh, R., Kainthola, A. and Singh, T. (2012), "Estimation of elastic constant of rocks using an ANFIS approach", Appl. Soft Comput., 12(1), 40-45. https://doi.org/10.1016/j.asoc.2011.09.010
  60. Sivakumar, R. and Balu, K. (2010), "ANFIS based distillation column control", Int. J. Comput. Appl. Spec. Issue Evol. Comput., 2, 67-73.
  61. Tian, L. and Collins, C. (2005), "Adaptive neuro-fuzzy control of a flexible manipulator", Mechatron., 15(10), 1305-1320. https://doi.org/10.1016/j.mechatronics.2005.02.001
  62. Toghroli, A., Suhatril, M., Ibrahim, Z., Safa, M., Shariati, M. and Shamshirband, S. (2016), "Potential of soft computing approach for evaluating the factors affecting the capacity of steel-concrete composite beam", J. Intel. Manuf., 1-9.
  63. Toghroli, A., Mohammadhassani, M., Suhatril, M., Shariati, M. and Ibrahim, Z. (2014), "Prediction of shear capacity of channel shear connectors using the ANFIS model", Steel Compos. Struct., 17(5), 623-639. https://doi.org/10.12989/scs.2014.17.5.623
  64. Tripathy, A., Singh, T. and Kundu, J. (2015), "Prediction of abrasiveness index of some Indian rocks using soft computing methods", Measur., 68, 302-309.
  65. Trivedi, R., Singh, T. and Gupta, N. (2015), "Prediction of blastinduced flyrock in opencast mines using ANN and ANFIS", Geotech. Geolog. Eng., 33(4), 875-891. https://doi.org/10.1007/s10706-015-9869-5
  66. Verma, A. and Maheshwar, S. (2014), "Comparative study of intelligent prediction models for pressure wave velocity", J. Geosci. Geomat., 2(3), 130-138.
  67. Verma, A. and Singh, T. (2013), "A neuro-fuzzy approach for prediction of longitudinal wave velocity", Neur. Comput. Appl., 22(7-8), 1685-1693. https://doi.org/10.1007/s00521-012-0817-5

Cited by

  1. Identification of the most influencing parameters on the properties of corroded concrete beams using an Adaptive Neuro-Fuzzy Inference System (ANFIS) vol.34, pp.1, 2018, https://doi.org/10.12989/scs.2020.34.1.155
  2. Experimental study on axial compressive behavior of welded built-up CFT stub columns made by cold-formed sections with different welding lines vol.34, pp.3, 2018, https://doi.org/10.12989/scs.2020.34.3.347
  3. The effect of RBS connection on energy absorption in tall buildings with braced tube frame system vol.34, pp.3, 2018, https://doi.org/10.12989/scs.2020.34.3.393
  4. Computational estimation of the earthquake response for fibre reinforced concrete rectangular columns vol.34, pp.5, 2018, https://doi.org/10.12989/scs.2020.34.5.743
  5. Utilization of Support Vector Models and Gene Expression Programming for Soil Strength Modeling vol.45, pp.5, 2018, https://doi.org/10.1007/s13369-020-04441-6
  6. Human development index in a context of human development: Review on the western Balkans countries vol.10, pp.9, 2018, https://doi.org/10.1002/brb3.1755
  7. Prediction of total sediment load: A case study of Wadi Arbaat in eastern Sudan vol.26, pp.6, 2018, https://doi.org/10.12989/sss.2020.26.6.781
  8. Hybridization of metaheuristic algorithms with adaptive neuro-fuzzy inference system to predict load-slip behavior of angle shear connectors at elevated temperatures vol.278, pp.None, 2018, https://doi.org/10.1016/j.compstruct.2021.114524