참고문헌
- Ali, D. (2015), "Prediction of hybrid fibre-added concrete strength using artificial neural networks", Comput. Conrete, 15(4), 503-514. https://doi.org/10.12989/cac.2015.15.4.503
- Bilgehan, M. (2011), "A comparative study for the concrete compressive strength estimation using neural network and neuro-fuzzy modeling approaches", Nondestr. Test. Eval., 26(1), 35-55. https://doi.org/10.1080/10589751003770100
- Cai, Z.L., Xu, W.Y., Meng, Y.D., Shi, C. and Wang, R.B. (2016), "Prediction of landslide displacement based GA-LSSVM with multiple factors", B. Eng.Geol. Environ., 75(2), 637-646. https://doi.org/10.1007/s10064-015-0804-z
- Chopra, P., Sharma, R.K. and Kumar, M. (2016), "Prediction of compressive strength of concrete using artificial neural network and genetic programming", Adv. Mater. Sci. Eng., 1-10.
- Dibike, Y., Velickov, S., Solomatine, D. and Abbott, M. (2001), "Model induction with support vector machines: introduction and applications", J. Comput. Civil Eng., 15(3), 208-216. https://doi.org/10.1061/(ASCE)0887-3801(2001)15:3(208)
- Faruqi, M.A., Agarwala, R., Sai, J. and Francisco, A. (2015), "Application of artificial intelligence to predict compressive strength of concrete from mix design parameters: a structural engineering application", J. Civil Eng. Res., 5(6), 158-161.
- Gholamreza, A., Ehsan, J. and Zahra, K. (2016), "Predicting of compressive strength of recycled aggregate concrete by genetic programming", Comput. Conrete, 18(2), 155-163. https://doi.org/10.12989/cac.2016.18.2.155
- Hola, J. and Schabowica, K. (2005), "Application of artificial neural network to determine concrete compressive strength based on non-destructive tests", J. Civil Eng. Manage., 11(1), 23-32.
- Kennedy, J. and Eberhart, R.C. (1995), "Particle swarm optimization", Proc. IEEE Int. Conf. on Neural Networks, 4, IEEE Service Center, Piscataway, Perth, Australia.
- Khan, S.U., Ayub, T. and Rafeeqi, S.F.A. (2013), "Prediction of compressive strength of plain concrete confined with ferrocement using artificial neural network and comparison with existing mathematical models", Am. J. Civil Eng. Arch., 1(1), 7-14. https://doi.org/10.12691/ajcea-1-1-2
- Lee, S.C. (2003), "Prediction of concrete strength using artificial neural networks", Eng. Struct., 25, 849-857. https://doi.org/10.1016/S0141-0296(03)00004-X
- Mercer, J. (1909), "Functions of positive and negative type and their connection with the theory of integral equations", Philos. T. R. Soc., 209, 415-446. https://doi.org/10.1098/rsta.1909.0016
- Mohammed, S., Steffen, G., Abdulkadir, C. and Joost, W. (2016), "Modelling fresh properties of self-compacting concrete using neural network technique", Comput. Conrete, 18(4), 903-921. https://doi.org/10.12989/cac.2016.18.6.903
- Ni, H.G. and Wang, J.Z. (2000), "Prediction of compressive strength of concrete by neural networks", Cement Concrete Res., 30(8), 1245-1250. https://doi.org/10.1016/S0008-8846(00)00345-8
- Nikoo, M., Moghadam, F.T. and Sadowski, L. (2015), "Prediction of concrete compressive strength by evolutionary artificial neural networks", Adv. Mater. Sci. Eng., 1-8.
- Park, D. and Rilett, L.R. (1999), "Forecasting freeway link ravel times with a multi-layer feed forward neural network", Comput Aid. Civil Infr., 14, 358-367.
- Ramin, T., Hamid, R.S. and Mohsen, S. (2014), "The use of artificial neural networks in predicting ASR of concrete containing nano-silica", Comput. Conrete, 13(6), 739-748. https://doi.org/10.12989/cac.2014.13.6.739
- Sakthivel, V.P., Bhuvaneswari, R. and Subramanian, S. (2010), "An improved particle swarm optimization for induction motor parameter determination", Int. J. Comput. Appl., 1(2), 62-67.
- Suykens, J.A.K. and Vandewalle, J. (1999), "Least squares support vector machine classifiers", Neur. Proc. Lett., 9, 293-300. https://doi.org/10.1023/A:1018628609742
- Suykens, J.A.K., Vandewalle, J. and De, M. B. (2001), "Optimal control by least squares support vector machines", Neur. Network., 14, 23-35. https://doi.org/10.1016/S0893-6080(00)00077-0
- Wisniewski, D.F., Cruz, P.J.S., Henriques, A. Abel R. and Simoes, R.A.D. (2012), "Probabilistic models for mechanical properties of concrete, reinforcing steel and pre-stressing steel", Struct. Inf. Eng., 8(2), 111-123. https://doi.org/10.1080/15732470903363164
- Yeh, I.C. (1998), "Modeling of strength of high performance concrete using artificial neural networks", Cement Concrete Res., 28(12), 1797-1808. https://doi.org/10.1016/S0008-8846(98)00165-3
- Zhang, C.S., Ji, J., Gui, Y.l., Kodikara, J., Yang, S.Q. and He, L. (2016), "Evaluation of soil-concrete interface shear strength based on LS-SVM", Geomech. Eng., 11(3), 361-372. https://doi.org/10.12989/gae.2016.11.3.361
피인용 문헌
- Early Warning for the Construction Safety Risk of Bridge Projects Using a RS-SSA-LSSVM Model vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/4449451
- A water quality prediction model based on variational mode decomposition and the least squares support vector machine optimized by the sparrow search algorithm (VMD-SSA-LSSVM) of the Yangtze River, Ch vol.193, pp.6, 2018, https://doi.org/10.1007/s10661-021-09127-6