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Covariance and correlation are basic measures describing the relationship between two 
variables. They are a broad class of statistical tools which evaluate how two variables are 
related with dependence or association, especially for linear relationship. Difference between 
the two is that covariance is calculated under the original units of two variables, while 
correlation is obtained based on standardized scale resulting in a unit-less measure.

COVARIANCE

Covariance is defined as the expected value of variations of two variables from their expected 
values. More simply, covariance measures how much variables change together. The mean of 
each variable is used as reference and relative positions of observations compared to mean 
is important. Covariance is simply defined as the mean of multiplication of corresponding X 
and Y deviations from their mean, (𝑋𝑋 − 𝑋̅𝑋)  and (𝑌𝑌 − 𝑌̅𝑌) . Covariance is expressed as following 
formula:

where n is the number of X and Y pairs.

Covariance mainly represents the direction of relationship of two variables. A positive sign 
of covariance value represents that two variables move to the same direction while a negative 
covariance value means that two variables move to opposite directions. Figure 1 shows a 
coordinate plane made by the line X and Y (dotted line) as well as 𝑋̅𝑋 

 

 = 5 and 𝑌̅𝑌  = 6 (solid line). 
In the quadrant I, x value moves positively from its mean and so does y value. Therefore, 
the points in the quadrant I represent positive relationship between two variables because 
Y values get larger as X values get larger relatively to their mean. Similarly, the points in the 
quadrant III also represent positive relationship because Y values get smaller than its mean 
as X values get smaller. The sign of the multiplicative value of each deviation, (𝑋𝑋 − 𝑋̅𝑋)(𝑌𝑌 − 𝑌̅𝑌) 

 

 
is positive in the quadrants I and III because the pair of deviations have the same sign that 
both are positive or negative. Contrary, the points in quadrants II and IV show negative 
relationship as one variable gets larger than its mean as the other gets smaller (Figure 1). In 
quadrants II and IV, the sign of the multiplicative value of each deviation is negative because 
the pair of deviations have different signs each other.
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Covariance(𝑋𝑋, 𝑌𝑌) =
∑(𝑋𝑋 − 𝑋̅𝑋)(𝑌𝑌 − 𝑌̅𝑌)

𝑛𝑛 − 1  
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A positive sign of covariance means that points in the quadrants I and III are predominant 
than those in the quadrants II and IV. A negative sign represents predominance of points 
in the quadrants II and IV. Therefore, positive and negative signs of covariance values can 
be interpreted as positive and negative relationships between 2 variables, respectively. If 
the covariance value is near zero, we may interpret there is no clear positive or negative 
relationship. The example data in Table 1 shows positive covariance value, 109.1, which 
means a positive, increasing relationship between X and Y.
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Figure 1. Illustration of relative positions of two variables in reference to their means.

Table 1. The calculation procedure of covariance and Pearson correlation coefficient
No X Y X−X̄ Y−Ȳ (X−X ̄)2 (Y−Ȳ)2 (X−X̄)(Y−Ȳ)

1 73 90 0.55 7.65 0.30 58.52 4.21
2 52 74 −20.45 −8.35 418.20 69.72 170.76
3 68 91 −4.45 8.65 19.80 74.82 −38.49
4 47 62 −25.45 −20.35 647.70 414.12 517.91
5 60 63 −12.45 −19.35 155.00 374.42 240.91
6 71 78 −1.45 −4.35 2.10 18.92 6.31
7 67 60 −5.45 −22.35 29.70 499.52 121.81
8 80 89 7.55 6.65 57.00 44.22 50.21
9 86 82 13.55 −0.35 183.60 0.12 −4.74

10 91 105 18.55 22.65 344.10 513.02 420.16
11 67 76 −5.45 −6.35 29.70 40.32 34.61
12 73 82 0.55 −0.35 0.30 0.12 −0.19
13 71 93 −1.45 10.65 2.10 113.42 −15.44
14 57 73 −15.45 −9.35 238.70 87.42 144.46
15 86 82 13.55 −0.35 183.60 0.12 −4.74
16 76 88 3.55 5.65 12.60 31.92 20.06
17 91 97 18.55 14.65 344.10 214.62 271.76
18 69 80 −3.45 −2.35 11.90 5.52 8.11
19 87 87 14.55 4.65 211.70 21.62 67.66
20 77 95 4.55 12.65 20.70 160.02 57.56

X̄ = 72.45 Ȳ = 82.35 ∑ = 2,912.95 ∑ = 2,742.55 ∑ = 2,072.85

Covariance(𝑋𝑋, 𝑌𝑌) =
∑(𝑋𝑋 − 𝑋̅𝑋)(𝑌𝑌 − 𝑌̅𝑌)

𝑛𝑛 − 1 = 2,072.85
20 − 1 = 109.10,

SD(𝑋𝑋) = √∑(𝑋𝑋 − 𝑋̅𝑋)2
𝑛𝑛 − 1 = √2912.95

20 − 1 = 12.38, SD(𝑌𝑌) = √∑(𝑌𝑌 − 𝑌̅𝑌)2
𝑛𝑛 − 1 = √2,742.55

20 − 1 = 12.01, 

 

Pearson correlation coefficient (𝑟𝑟) = 𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥, 𝑦𝑦)
SD(𝑋𝑋) × SD(𝑌𝑌) = 109.10

12.38 × 12.01 = 0.73. 
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Then what can we say about the size of covariance values? Magnitude of the relationship? 
However, the problem is that the absolute value of covariance depends on the unit of 
variables. For example, if we change the unit of a variable from kilometer to meter unit, 
then the deviance from mean of 1 in kilometer units (km) is changed into 1,000 in meter 
units (m). The unit change makes huge difference in the value of covariance, even when 
the relationship of 2 variables is the same. Therefore, the size of covariance value cannot be 
interpretable as the magnitude of a relationship. Also, a covariance value has neither upper or 
lower bound nor any standard to determine the degree of relationship. There is a need of unit 
standardization procedure on covariance.

Table 1 shows the calculation procedure of covariance and Pearson correlation coefficient. 
Deviations of X and Y are multiplied, summed-up, and finally divided by n-1 to get covariance 
value. The Pearson correlation coefficient is obtained by dividing covariance value with 
standard deviations (SDs) of X and Y variables.

PEARSON CORRELATION COEFFICIENT

Correlation is the standardized form of covariance by dividing the covariance with SD of each 
variable under normal distribution assumption. Generally, we use ‘r’ as sample correlation 
coefficient and ‘ρ’ as population correlation coefficient. The Pearson correlation coefficient 
has following formula.

The Pearson correlation coefficient is also the covariance of standardized form of X and Y 
variables. The correlation coefficient is unit-less, being independent of the scale of variables 
and the range is between −1 and +1. The interpretation of the Pearson correlation coefficient 
was provided by Cohen [1]. He proposed a small, medium, and large effect size of r as 0.1, 
0.3, and 0.5, respectively, and explained that the medium effect size represents an effect likely 
to be visible to the naked eye of a careful observer. Also he subjectively set a small effect size 
to be noticeably smaller than medium but not so small as to be trivial and set a large effect 
size to be the same distance above the medium as small was below it [1]. His standard is 
generally accepted at the present.

Because the correlation coefficient reflects only the strength of linear relationship, we need a 
cautious investigation of scatterplot before calculating it. As shown in Figure 2, a correlation 
coefficient of 0.8 can be obtained from totally different relationships between two variables. 
Only Figure 2A shows correct linear relationship, while curved relationship (Figure 2B), 
distorting effect of an outlier (Figure 2C), and strong effect of an outlier on the unrelated 
relationship (Figure 2D) show some relations different from a linear one. We need to keep 
in mind that all these different shapes of relationships could result in the same correlation 
coefficient. We should check those possibilities using scatterplots.

If the correlation coefficient is zero, there is also some caution needed in interpreting the 
meaning. We may expect no relationship such as Figure 3A, the shape of random scatter. 
However, U shape or reverse U shape relationship can show zero correlation coefficient 
(Figure 3B and 3C). An example of U shape relationship is the relationship between 
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Pearson Correlation coefficient (ρ or 𝑟𝑟) = 𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥, 𝑦𝑦)
SD(𝑋𝑋) × SD(𝑌𝑌) 

 

https://rde.ac


consumption of electricity and temperature. At very low temperature lots of electricity is 
consumed for warming and the need is gradually decreased with the increase of temperature. 
However, if temperature rises further we need more electricity for air conditioning. An 
example of reverse U shape is the relationship between stress and work performance. 
Performance may be improved if there is some stress, but too much stress can cause burn-out 
of the person which decreases performance. Therefore, it is always a good idea to examine 
the relationship between variables with a scatterplot.
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Figure 2. Four different relationship of two variables with the same correlation coefficient of around 0.8.
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Figure 3. Typical types of zero correlation: (A) random scatter — true no association, (B) U shape, and (C) reverse U shape.
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SPEARMAN'S RANK CORRELATION COEFFICIENT

Spearman's rank correlation coefficient is the non-parametric version of the Pearson 
correlation coefficient calculated using rank values of two variables. It is expressed as 
following formula.

where d = Rank(Y) − Rank(X) and n = sample size.

While the Pearson correlation assesses linear relationships, Spearman correlation assesses 
monotonic relationship that two variables are related but not necessarily linear. Let’s consider 
the relationship between 99 p values ranges from 0.01 to 0.99 by 0.01-unit increase and 
corresponding log odds values, ln ( 𝑝𝑝

1 − 𝑝𝑝) 

 

. As seen Figure 4, Spearman correlation coefficient 
is 1 when y values always increase as x values increase, while Pearson correlation coefficient 
counts only linearity with coefficient of 0.97. Spearman rank correlation coefficient can be 
applied on continuous variables with influential outliers which are located far away from most 
observations. In such cases, it is not appropriate to apply Pearson. Also, it can be applied to 
assess relationships between ordered categorical values. The range of Spearman correlation 
coefficient is from −1 to +1, which represent perfect negative and positive relationships, 
respectively.

Table 2 shows the calculation procedure of the Spearman rank correlation. Difference of rank 
of two variables is used in calculating rank correlation coefficient.
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Figure 4. A curved relationship of ‘p’ and ‘ln odds’. (Pearson correlation = 0.97 vs. Spearman's rank correlation = 1).

Spearman correlation coefficient (ρ or 𝑟𝑟𝑠𝑠) = 1 − 6 ∑ 𝑑𝑑2

𝑛𝑛(𝑛𝑛2 − 1) , 
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Table 2. The calculation procedure of the Spearman's rank correlation
No X Y Rank(X) Rank(Y) d* d2

1 73 90 11.5 15 3.5 12.25
2 52 74 2 5 3 9
3 68 91 7 16 9 81
4 47 62 1 2 1 1
5 60 63 4 3 −1 1
6 71 78 9.5 7 −2.5 6.25
7 67 60 5.5 1 −4.5 20.25
8 80 89 15 14 −1 1
9 86 82 16.5 10 −6.5 42.25

10 91 105 19.5 20 0.5 0.25
11 67 76 5.5 6 0.5 0.25
12 73 82 11.5 10 −1.5 2.25
13 71 93 9.5 17 7.5 56.25
14 57 73 3 4 1 1
15 86 82 16.5 10 −6.5 42.25
16 76 88 13 13 0 0
17 91 97 19.5 19 −0.5 0.25
18 69 80 8 8 0 0
19 87 87 18 12 −6 36
20 77 95 14 18 4 16

∑ = 328.5

Spearman's correlation coefficient (𝑟𝑟𝑠𝑠) = 1 − 6 ∑ 𝑑𝑑2

𝑛𝑛(𝑛𝑛2 − 1) = 1 − 6 × 328.5
20(202 − 1) = 1 − 0.25 = 0.75. 

 
*d = Rank(Y) − Rank(X).
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Appendix 1. Procedure of covariance and correlation using IBM SPSS

The procedure of logistic regression using IBM SPSS Statistics for Windows Version 23.0 (IBM Corp., Armonk, NY, USA) is as follows.

(A) Data (B) Analyze-Correlate-Bivariate logistic

(C) Pearson correlation coefficient (D) Spearman's rank correlation
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