DOI QR코드

DOI QR Code

Effect of Endophytic Bacterium Inoculation on Total Polyphenol and Flavonoid Contents of Tartary Buckwheat Sprouts

  • Briatia, Xoxiong (Department of Food Science and Technology, Faculty of Agriculture and Forest Resources, Souphanouvong University) ;
  • Azad, Md Obyedul Kalam (Department of Bio Health Technology, College of Biomedical Science, Kangwon National University) ;
  • Khanongnuch, Chartchai (Division of Biotechnology, Faculty of Agro-Industry, Chiang Mai University) ;
  • Woo, Sun Hee (Department of Crop Science, Chungbuk National University) ;
  • Park, Cheol Ho (Department of Bio Health Technology, College of Biomedical Science, Kangwon National University)
  • Received : 2017.11.10
  • Accepted : 2018.02.01
  • Published : 2018.03.31

Abstract

The effects of endophytic microbial inoculation and temperature on the phenolic content of tartary buckwheat (TP) sprouts were investigated. TP seeds were inoculated with Herbaspirillum spp. at concentrations (%v/v) of 0 (control), 10, 20, and 40% at 20, 25, and $30^{\circ}C$ in a growth chamber for seven days. It was observed that the phenolic content (PC) including flavonoid, rutin, and tanin increased with an increase in inoculant rate at $20^{\circ}C$, whereas the PC content increased with an increase in temperature regardless of the inoculant rate. Therefore, it is suggested that increasing the inoculant rate is effective at achieving higher phenolic contents when plants are grown at lower temperatures.

Keywords

References

  1. Aly, A. H., A. Debbab, J. Kjer, and P. Proksch. 2010. Fungal endophytes from higher plant: a prolific source of phyto- chemicals and other bioactive natural products. Fungal Diversity. 41 : 1-16. https://doi.org/10.1007/s13225-010-0034-4
  2. Akanksha, S., A. R. Gupta, and R. Pandey. 2016. Rice Seed Priming with Picomolar Rutin Enhances Rhizospheric Bacillus subtilis CIM Colonization and Plant Growth. PLoS One v.11 (1): PMC4711789: DOI:10.1371/journal.pone.0146013.
  3. Atlas, R. M. 2010. Handbook of Microbiological Media.4th ed. CRC Press Inc, Florida.
  4. Beauregard, P. B., Y. Chai, H. Vlamakis, R. Losick, and R. Kolter. 2013. Bacillus subtilis biofilm induction by plant polysaccharides. Proc. Nat. Acad. Sci. 110 : 1621-1630. https://doi.org/10.1073/pnas.1218984110
  5. Elsheikh, E. A. E. 2001. Effect of inoculation with Rhizobium on the seed chemical and physical properties of legumes. Aspects applied Biol. 63 : 151-163.
  6. Eom, S. H., H. J. Park, C. W. Jin, D. O. Kim, D. W. Seo, Y. H. Jeong, and D. H. Cho. 2008. Changes in antioxidant activity with temperature and time in Chrysanthemum indicum L. (Gamguk) tea during elution processes in hot water. Food Sci. Biotech. 17 : 408-412.
  7. Briatia, X., M. H. Lee, S. K. Hong, I. J. Sung, K. J. Chang, B. J. Park, and C. H. Park. 2012. Local Adaptability of Buckwheat Species in Luang Prabang Region, Lao P. D. R. Korean J. Plant Res. 25(3) : 357-362. https://doi.org/10.7732/kjpr.2012.25.3.357
  8. Chen, Y. S., B. L. Liu, and Y. N. Chang. 2010. Bioactivities and sensory evaluation of Pu-erh teas made from three tea leaves in an improved pile fermentation process. J. Biosci. Bioeng. 109(6) : 557-563. https://doi.org/10.1016/j.jbiosc.2009.11.004
  9. Chan, E. W. C., Y. Y. Lim, S. K. Wong, K. K. Lim, S. P. Tan, F. S. Lianto, and M.Y. Yong. 2009. Effect of different drying methods on the antioxidant properties of leaves and tea of ginger species. Food Chemistry. 113 : 166-172. https://doi.org/10.1016/j.foodchem.2008.07.090
  10. Gadzo, D., M. Djikic, T. Gavric, and P. Strekelj. 2010. Comparison of tannin concentration in young plants of common and Tartary buckwheat. Acta agriculturae Slovenica. 95(1) : 75-78.
  11. Hyde, K. D. and K. Soytong. 2008. The fungal endophyte dilemma. Fungal Divers. 33 : 163-173.
  12. Halbrecq, B., P. Romedenne, and J. F. Ledent. 2005. Evolution of flowering ripening and seed set in buckwheat (Fagopyrum esculentum Moench): quantitative analysis. Europ. J. Agronomy. 23 : 209-224. https://doi.org/10.1016/j.eja.2004.11.006
  13. Kim, S. J., I. S. M. Zaidul, T. Suzuki, Y. Mukasa, N. Hashimoto, S. Takigawa, T. Noda, M. E. Chie, and H. Yamauchi. 2008. Comparison of phenolic compositions between Common and Tartary buckwheat (Fagopyrum) sprouts. Food Chemistry. 110 : 814-820. https://doi.org/10.1016/j.foodchem.2008.02.050
  14. Kitabayashi, H., A. Ujihara, T. Hirose, and M. Minami. 1995a. Varietal differences and heritability for rutin content in common buckwheat, Fagopyrum esculentum Moench. Breeding Science. 45 : 75-79.
  15. Kitabayashi, H., A. Ujihara, T. Hirose, and M. Minami. 1995b. On the genotypic differences for rutin content in Tartary buckwheat, Fagopyrum tataricum Gaertn. Breeding Science. 45 : 189-194.
  16. Kim, Y. S. and J. G. Kim. 2001. Studies on the rutin content and fatty acid composition of buckwheat sprout. The proceeding of the 8th ISB : 561-563.
  17. Kreft, I., N. Fabjan, and K. Yasumoto. 2006. Rutin contents in buckwheat (Fagopyrum esculentum Moench) food materials and products. Food Chemistry. 98 : 508-521. https://doi.org/10.1016/j.foodchem.2005.05.081
  18. Lee, H. S., C. H. Park, B. J. Park, S. M. Kwon, K. J. Chang, and S. L. Kim. 2006. Rutin, catechin derivatives, and chemical components of Tartary buckwheat (Fagopyrum tataricum Gaertn.) sprouts. Korean J. Crop Sci. 51(S) : 277-282.
  19. Lin, L. Y., C. C. Peng, Y. L. Yang, and R.Y. Peng. 2008. Optimization of bioactive compounds in buckwheat sprouts and their effect on blood cholesterol in hamsters. J. Agric. Food Chemistry. 56(4) : 1216-1223. https://doi.org/10.1021/jf072886x
  20. Lee, M. H., J. U. Lee, and T. H. Lee. 2004. Germination of buckwheat grains: Effects in minerals, rutin, tannins and colour. Proc. Int. Symposium on Buckwheat. Prague : 50-54.
  21. Lees, G. L., C. F. Hinks, and N. H. Suttill. 1994. Effect of high temperature on condensed tannin accumulation in leaf tissues of big Trefoil. J. Sci. Food Agric. 65(4) : 415-421. https://doi.org/10.1002/jsfa.2740650408
  22. Li, X. Y., H. D. Huang, R. Y. Zhen, and G. J. Niu. 2010. Identification of endophyte from Tartary buckwheat and its influence on synthesis of flavonoids (Abstract). Sci. Tech. Food Industry. S517-518.
  23. Musa, E. M., E. A. E. Elsheikh, I. A. M. H., Ahmed, and E. E. Babiker. 2011. Effect of intercropping, Bradyrhizobium inoculation and N, P fertilizers on yields, physical and chemical quality of cowpea seeds. Front. Agric. China. 5(4) : 543-551. https://doi.org/10.1007/s11703-011-1147-6
  24. Ohnishi, O. 1995. Discovery of new Fagopyrum species and its implication for the studies of evolution of Fagopyrum and of the origin of cultivated buckwheat. pp.175-190, Current Advances in Buckwheat Research. Vol. IIII. Proc. 6th ISB., Shinshu. 24-29.
  25. Park, C. H., Y. B. Kim, Y. S. Choi, K. Heo, S. L. Kim, K. C. Lee, K. J. Chang, and H. B. Lee. 2000. Rutin content in food products processed from groats, leaves, and flowers of buckwheat. Fagopyrum. 17 : 63-66.
  26. Park, B. J., S. M. Kwon, J. I. Park, K. J. Chang, and C. H. Park. 2005. Phenolic compounds in common and Tartary buckwheat. Korean J. Crop Sci. 50(S) : 175-180.
  27. Peng, C. C., K. C. Chen, Y. L. Yang, L. Y. Lin, and R. Y. Peng. 2009. Aqua-culture improved buckwheat sprouts with more abundant precious nutrients and hypolipidemic activity. Int. J. Food Sci. Nutri. 60(S1) : 232-245.
  28. Rangkadilok, N., L. Worasuttayangkurn, R. Bennett, and J. Satayavivad. 2005. Identification and quantification of phenolic compounds in Longan (Euphoria longana Lam.) fruit. J. Agric. Food Chem. 53(5) : 1387-1392. https://doi.org/10.1021/jf0403484
  29. Randhir, R., Y. I. Kwon, and K. Shetty. 2008. Effect of thermal processing on phenolics, antioxidant activity and health- relevant functionality of select grain sprouts and seedlings. Inno. Food Sci.Eng. Tech. 9 : 355-364.
  30. Saxena, V., G. Mishra, A. Saxena, and K. K. R. Vishwakarma. 2013. A comparative study on quantitative estimation of tannins in Terminalia chebula, Terminalia belerica, Terminalia arjuna and Saraca indica using spectrophotometer. Asian. J. Pharm Clin. Res. 6(3) : 148-149.
  31. Shiow, Y. W. and W. Zheng. 2001. Effect of Plant Growth Temperature on Antioxidant Capacity in Strawberry. J. Agric. Food Chem. 49(10) : 4977-4982. https://doi.org/10.1021/jf0106244
  32. Sharma, P., A. Kumar, G. Anup Gurung, W. J. Cheng, S. R. Ho, and D. H. Cho. 2012. Phenolic contents, antioxidant and ${\alpha}$-glucosidase inhibition properties of Nepalese strain buckwheat vegetables. African J.Biotech. 11(1) : 184-190.
  33. Spiering, M. J., D. H. Greer, and J. Schmid. 2006. Effects of the fungal endophyte, Neotyphodiumlolii, on net photosynthesis and growth rates of perennial ryegrass (Loliumperenne) are independent of in planta endophyte concentration. Annals of Botany. 98 : 379-387. https://doi.org/10.1093/aob/mcl108
  34. Strobel, G. A. 2003. Endophytes as source of bioactive products. Microbes and Infection 5 : 535-544. https://doi.org/10.1016/S1286-4579(03)00073-X
  35. Skerritt, J. H. 1986. Molecular comparison of alcohol-soluble wheat and buckwheat proteins. Cereal Chemistry. 63 : 365-369.
  36. Tao, Y. P., Q. L. Shi, X. X. Zhang, and Y. N. Zhou. 2004. Inoculation effect on growth and flavonoids content of Tartary buckwheat in field experiment. Proceeding of the 9th ISB, Prague. 116-123.
  37. Wu, G., S. K. Johnson, J. F., Bornman, S. J. Bennett, V., Singh, A. Simic, and Z. Fang. 2016. Effect of genotype and growth temperature on the contents of tannin, phytate and Invitro iron availability of Sorghum grain. PLoS ONE 11(2) : e0148712. doi:10.1371/journal.pone.0148712.
  38. Zvezdanovic, J. B., J. S. Stanojevic, D. Z. Markovic, and D. J. Cvetkovic. 2012. Irreversible UV-induced quercetin and rutin degradation in solution studied by UV spectrophotometry and HPLC chromatography. J. Serb. Chem. Soc. 77(3) : 297-312. https://doi.org/10.2298/JSC110618180Z

Cited by

  1. Bacterial Endophytes as a Promising Approach to Enhance the Growth and Accumulation of Bioactive Metabolites of Three Species of Chenopodium Sprouts vol.10, pp.12, 2018, https://doi.org/10.3390/plants10122745