DOI QR코드

DOI QR Code

Production of γ-aminobutyric Acid Using the Korean Hull-less Barley Bran with Glutamate

국내산 쌀보리 맥강을 이용한 glutamate로부터 GABA 생산

  • Lee, Mi Ja (Crop Foundation Division, National Institute of Crop Science) ;
  • Kim, Shin Hye (Crop Foundation Division, National Institute of Crop Science) ;
  • Kim, Hyung Soon (Department of Environmental & Chemical Engineering, Seonam University) ;
  • Kim, Hyun Young (Crop Foundation Division, National Institute of Crop Science) ;
  • Seo, Woo Duck (Crop Foundation Division, National Institute of Crop Science) ;
  • Choi, Sik Won (Crop Foundation Division, National Institute of Crop Science) ;
  • Lee, Kwang Sik (Crop Foundation Division, National Institute of Crop Science) ;
  • Jang, Ki Chang (Crop Foundation Division, National Institute of Crop Science)
  • 이미자 (농촌진흥청 국립식량과학원 작물기초기반과) ;
  • 김신혜 (농촌진흥청 국립식량과학원 작물기초기반과) ;
  • 김형순 (서남대학교 환경화학공학과) ;
  • 김현영 (농촌진흥청 국립식량과학원 작물기초기반과) ;
  • 서우덕 (농촌진흥청 국립식량과학원 작물기초기반과) ;
  • 최식원 (농촌진흥청 국립식량과학원 작물기초기반과) ;
  • 이광식 (농촌진흥청 국립식량과학원 작물기초기반과) ;
  • 장기창 (농촌진흥청 국립식량과학원 작물기초기반과)
  • Received : 2017.10.21
  • Accepted : 2018.01.18
  • Published : 2018.03.31

Abstract

${\gamma}$-Aminobutyric acid (GABA) has antihypertensive and anti-stress effects on humans. The present study aimed to investigate the effect of glutamate concentration, bran content, and barley cultivars on GABA production and determine the optimal reaction condition. Barley bran resulted in higher GABA productivity compared with that of rice bran. The higher the bran content, the higher was the GABA productivity. Furthermore, high glutamate concentration resulted in high GABA production. However, there was a decrease in the glutamate conversion rate. The production of GABA varied with temperature and barley cultivar. The optimal condition for GABA production using barley bran was 0.15 g/mL barley content, 10 mM glutamate concentration, and $20^{\circ}C$ reaction temperature. Under optimal condition, the GABA concentration was 10.34 mM, and glutamate conversion rate was 75.1%. Furthermore, the GABA productivity of the GABA production reaction using barley bran differed depending on the cultivar. Dasong and Yeongbaekchal showed higher GABA productivity than that by other cultivars.

곡류 가공 부산물인 미강과 맥강을 활용한 GABA 생산성 향상을 위하여 맥강과 미강의 첨가량, glutamate 농도 및 보리 품종에 따른 GABA 생산량을 측정 비교하였다. 그 결과 맥강이 미강 보다 모든 조건에서 높은 GABA 생산성을 보였고, 맥강을 활용한 GABA 생산 반응에서 최적 조건은 맥강 첨가량은 0.15 g/mL, glutamate 농도는 10 mM, 반응온도는 $20^{\circ}C$로 이때 glutamate의 GABA로의 전환율은 75.1%였다. 또한 보리 품종에 따른 GABA 생산성은 유의적인 차이를 나타내었으며 다송과 영백찰쌀보리가 높은 GABA 생산성을 나타내었다. 본 연구결과 부산물인 맥강을 이용하여 GABA 생산성을 향상시킬 수 있었으며, 보리 품종이 GABA 생산의 중요 요인으로 작용하였다.

Keywords

References

  1. Choi, S. I., J. W. Lee, S. M. Park, M. Y. Lee, G. E. Ji, M. S. Park, and T. R. Heo. 2006. Improvement of ${\gamma}$-aminobutyric acid (GABA) production using cell entrapment of Lactobacillus brevis GABA 057. J. Microbiol. Biotechnol. 16 : 562-568.
  2. Chuang, C. Y., Y. C. Shi, H. P. You, Y. H. Lo, and T. M. Pan. 2011. Antidepressant effect of GABA-rich monascus-fermented production forced swimming rat model. J. Agric. Food Chem. 59 : 3027-3034. https://doi.org/10.1021/jf104239m
  3. Chung, H. J., S. H. Jang, H. Y. Cho, and S. T. Lim. 2009. Effects of steeping and anaerobic treatment on GABA (${\gamma}$-aminobutyric acid) content in germinated waxy hull-less barley. LWT-Food Sci. Technol. 42 : 1712-1716. https://doi.org/10.1016/j.lwt.2009.04.007
  4. Hasler, G., J. Van der Veen, T. Tumonis, N. Meyers, J. Shen, and W. C. Drevets. 2007. Reduced prefrontal glutamate/glutamine and ${\gamma}$-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Archiv. General Psychiatry. 64 : 193-200. https://doi.org/10.1001/archpsyc.64.2.193
  5. Ito, S. 2004. Marketing of value added rice products in Japan: Germinated brown rice and rice bread. pp. 1-9. In; FAO rice conference. February 12, Rome, Italy.
  6. Jeng, K. C., C. S. Chen, Y. P. Fang, R. C. W. Hou, and Y. S. Chen. 2007. Effect of microbial fermentation on content of statin, GABA and polyphenols in Pu-Erh tea. J. Agric. Food Chem. 55 : 8787-8792. https://doi.org/10.1021/jf071629p
  7. Kihara, M., Y. Okada, T. Limure, and K. Ito. 2007. Accumulation and degradation of two functional constituents, GABA and ${\beta}$-glucan and their varietal differences in germinated barley grains. Breeding Sci. 57 : 85-89. https://doi.org/10.1270/jsbbs.57.85
  8. Kim, Y. H., C. S. Kang, and Y. S. Lee. 2004. Quantification of tocopherol and tocotrienol content in rice bran by near infrated reflectance spectroscopy. Korean J. Crop Sci. 43 : 211-215.
  9. Komatsuzaki, N., K. Tsukahara, H. Toyoshima, T. Suzuki, N. Shimizu, and T. Kimura. 2007. Effect of soaking and gaseous treatment on GABA content in germinated brown rice. J. Food Eng. 78 : 556-560. https://doi.org/10.1016/j.jfoodeng.2005.10.036
  10. Lim, S. D., S. H. Yoo, H. D. Yang, S. K. Kim, and S. Y. Park. 2009. GABA productivity in yogurt fermented by freeze dried culture preparations of Lactobacillus acidophilus RMK567. Korean J. Food Sci. An. 29 : 437-444. https://doi.org/10.5851/kosfa.2009.29.4.437
  11. Limure, T., M. Kihara, N. Hirota, T. Zhou, K. Hayashi, and K. Ito. 2009. A method for production of ${\gamma}$-amino butyric acid (GABA) using barley bran supplemented with glutamate. Food Research International. 42 : 319-323. https://doi.org/10.1016/j.foodres.2008.12.010
  12. Liu, L. L., H. Q. Zhai, and J. M. Wan. 2005. Accumulation of ${\gamma}$-aminobutyric acid in giant-embryo rice grain in relation to glutamate decarboxylase activity and its gene expression during water soaking. Cereal Chemistry. 82 : 191-198. https://doi.org/10.1094/CC-82-0191
  13. Obata, K., M. Hirono, N. Kume, Y. Kawaguchi, S. Itohara, and Y. Yanagawa. 2008. GABA and synaptic inhibition of mouse cerebellum lacking glutamate decarbosylase67. Biochem. Biophy. Res. Commun. 370 : 429-433. https://doi.org/10.1016/j.bbrc.2008.03.110
  14. Paidaeng, K., C. Ninnart, P. Rath, and C. Saiwarun. 2014. Gamma-aminobutyric acid and glutamic acid contents, and the GAD activity in germinated brown rice (oryza sativa L.): effect of rice cultivars. Food Sci. Biotechnol. 23 : 373-379. https://doi.org/10.1007/s10068-014-0052-1
  15. Rissma, R. A., A. L. De Blas, and D. M. Amstrong. 2007. GABA receptors in aging and Alzheimer's disease. J. Neurochem. 103 : 1285-1292. https://doi.org/10.1111/j.1471-4159.2007.04832.x
  16. Saikusa, T., T. Horino, and Y. Mori. 1994. Accumulation of ${\gamma}$-aminobutyric acid (Gaba) in the rice germ during water soaking. Biosci. Biotechnol. and Biochem. 58 : 2291-2292. https://doi.org/10.1271/bbb.58.2291
  17. Shin, J. W., D. G. Kim, Y. W. Lee, H. S. Lee, K. S. Shin, C. S. Choi, and G. S. Kwon. 2007. Isolation and characterization of Lactobacillus brevis AML15 producing ${\gamma}$-aminobutyric acid. J. Life Sci. 17 : 970-975. https://doi.org/10.5352/JLS.2007.17.7.970
  18. Takashi, L., M. Kihara, N. Hirota, T. Zhou, K. Hayashi, K Ito. 2009. A method for production of ${\gamma}$-amino butyric acid (GABA) using barley bran supplemented with glutamate. Food Resear. Int. 42 : 319-323. https://doi.org/10.1016/j.foodres.2008.12.010
  19. Young, Y. S., J. K. Park, H. D. Hang, and Y. W. Rhee. 2011. Sequential hydration with anaerobic and heat treatment increases GABA (${\gamma}$-aminobutyric acid) content in wheat. Food Chem. 129 : 1631-1635. https://doi.org/10.1016/j.foodchem.2011.06.020