DOI QR코드

DOI QR Code

Germination and Proteome Profile Characteristics of Wheat Seeds Treated under Different Concentrations of Abscisic Acid

Abscisic acid 농도에 따른 밀 종자의 발아와 단백질체의 발현 특성

  • Jeong, Jae-Hyeok (Crop Production and Physiology Research Division, National Institute of Crop Science, Rural Development Administration) ;
  • Kim, Dae-Wook (Crop Production and Physiology Research Division, National Institute of Crop Science, Rural Development Administration) ;
  • Hwang, Woon-Ha (Crop Production and Physiology Research Division, National Institute of Crop Science, Rural Development Administration) ;
  • An, Sung-Hyun (Crop Production and Physiology Research Division, National Institute of Crop Science, Rural Development Administration) ;
  • Jeong, Han-Yong (Crop Production and Physiology Research Division, National Institute of Crop Science, Rural Development Administration) ;
  • Lee, Hyeon-Seok (Crop Production and Physiology Research Division, National Institute of Crop Science, Rural Development Administration) ;
  • Choi, In-Bea (Crop Production and Physiology Research Division, National Institute of Crop Science, Rural Development Administration) ;
  • Choi, Kyung-Jin (Crop Production and Physiology Research Division, National Institute of Crop Science, Rural Development Administration) ;
  • Yun, Jong-Tak (Crop Production and Physiology Research Division, National Institute of Crop Science, Rural Development Administration) ;
  • Yun, Song Joong (Department of Crop Science & Biotechnology, Chonbuk National University)
  • 정재혁 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 김대욱 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 황운하 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 안승현 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 정한용 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 이현석 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 최인배 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 최경진 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 윤종탁 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 윤성중 (전북대학교 농업생명과학대학 작물생명과학과)
  • Received : 2017.09.06
  • Accepted : 2017.12.23
  • Published : 2018.03.31

Abstract

This study was conducted to investigate the germination and proteome profile characteristics of wheat seeds treated under various concentrations of abscisic acid (ABA). After-ripening, the seeds of three wheat cultivars (Baegjoong, Keumkang, and Uri) showing different levels of dormancy were used. Germination index and germination rate of the cultivars was higher than 0.95% and 98%, respectively, and these were not significantly different under 0, 10, 30, and $50{\mu}M$ ABA at 7 d after germination. However, the growth of the shoot and radicle was significantly inhibited at 10, 30, and $50{\mu}M$ ABA compared to that at $0{\mu}M$ ABA. Mean ABA content of the embryos of seeds germinated at 0 and $50{\mu}M$ ABA for 7 d was 0.8 and $269.0ngmg^{-1}DW$, respectively. Proteins extracted from embryos germinated for 4 d were analyzed by two-dimensional gel electrophoresis, and proteins showing a difference of 1.5-fold or greater in their spot volume relative to that of $0{\mu}M$ ABA were identified. The expression of four protein spots increased at $50{\mu}M$ ABA and two protein spots were detected only at $50{\mu}M$ ABA; these six proteins were all identified as globulin types. Conversely, the expression of three protein spots decreased at $50{\mu}M$ ABA and were identified as cytosolic glutamine sysnthetase, isocitrate dehydrogenase, and S-adenosylmethionine synthetase 2. In conclusion, ABA did not inhibit the germination rate regardless of pre-harvest sprouting characteristics of the cultivars. However, the growth of the shoot and radicle was significantly inhibited by ABA, most likely through the down regulation of glutamine, methyl group donor, and polyamines biosynthesis, among others, while accompanied by globulin accumulation in the embryos.

휴면성이 다른 백중밀, 금강밀, 우리밀 후숙종자의 ABA 농도에 따른 발아 및 배아에서의 단백질체 발현 특성을 조사한 결과는 다음과 같다. 1. 백중밀, 금강밀, 우리밀 등 3품종의 0, 10, 30 및 $50{\mu}M$ ABA에서의 평균 발아지수와 발아율은 각각 0.95와 98% 이상으로 통계적으로 유의한 차이가 없었다. 유아와 유근의 생장은 $0{\mu}M$ ABA보다 10, 30 및 $50{\mu}M$ ABA에서 생장이 크게 억제되었는데, ABA 농도가 높을수록 생장이 더 억제되었다. 2. 3품종 배아의 평균 ABA 함량은 $0{\mu}M$ ABA와 $50{\mu}M$ ABA에서 각각 0.78 ng/mg과 269.04 ng/mg으로서 농도에 따른 ABA 함량의 차이가 컸다. 3. $0{\mu}M$ ABA 처리구에 비하여 $50{\mu}M$ ABA 처리구에서 발현양이 증가한 단백질 spot (S1, S3, S4, S6, S15, S16, S17)은 7개였으며, 감소한 단백질 spot (S2, S5, S9, S10, S11, S12, S13, S14, S18)은 8개였고, 증가와 감소가 동시에 이루어진 단백질 spot (S2)은 1개였다. $50{\mu}M$ ABA에서만 검출된 단백질 spot (S7, S8)은 2개였다. 4. 각 단백질 spot의 $0{\mu}M$ ABA 처리구 양에 대한 $50{\mu}M$ ABA 처리구 양의 평균 배수 값(fold 값)이 1.5배 이상으로 증가한 단백질 spot은 S1 (globulin-3A), S6 (globulin-1 S allele), S16 (globulin-1 S allele), S17 (globulin-1 S allele) 등으로 모두 globulin류 단백질이었다. 또한 $50{\mu}M$ ABA에서만 확인된 단백질 spot인 S7 (globulin 3)과 S8 (globulin-1 S allele)도 globulin 단백질이었다. 5. 각 단백질 spot의 $0{\mu}M$ ABA 처리구 양에 대한 $50{\mu}M$ ABA 처리구 양의 평균 배수 값(fold 값)이 0.7 이하로 감소한 단백질 spot은 S10 (glutamine sysnthetase cytosolic isozyme), S12 (S-adenosylmethionine synthetase 2), S14 (isocitrate dehydrogenase NADP)이었다. 이상의 결과는 ABA에 의한 밀 유묘의 유아와 유근의 생장억제는 배아에서의 ABA 농도 증가, 그리고 이에 따른 배아의 glutamine 합성에 관여하는 다양한 효소의 발현 감소 및 메틸기공여물질의 감소와 이에 따른 메틸기 전이활성의 감소 등이 관여하고 있음을 의미한다. 한편 배아에서의 ABA에 의한 globulin 단백질의 증가는 배아 특이적 globulin의 일시적 합성 증가와 globulin 분해 효소의 활성 억제 등이 복합적으로 관여한 결과로 생각된다.

Keywords

References

  1. Bove, J., P. Lucas, B. Godin, L. Oge, M. Jullien, and P. Grappin. 2005. Gene expression analysis by cDNA-AFLP highlights a set of new signaling networks and translational control during seed dormancy breaking in Nicotiana plumbaginifolia. Plant Mol. Biol. 57(4) : 593-612. https://doi.org/10.1007/s11103-005-0953-8
  2. Chen, Y., T. Zou, S. and McCormick. 2016. S-adenosylmethionine synthetase 3 is important for pollen tube growth. Plant Physiol. doi: org/10.1104/pp.16.00774.
  3. Da Silva, E. A. A., P. E. Toorop, A. A. M. Van Lammeren, and H. W. M. Hilhorst. 2008. ABA inhibits embryo cell expansion and early cell division events during coffee (Coffea arabica 'Rubi') seed germination. Ann. Bot.-London 102(3) : 425-433. https://doi.org/10.1093/aob/mcn112
  4. Gálvez, S., M. Lancien, and M. Hodges. 1999. Are isocitrate dehydrogenases and 2-oxoglutarate involved in the regulation of glutamate synthesis? Trends Plant Sci. 4(12) : 484-490. https://doi.org/10.1016/S1360-1385(99)01500-9
  5. Glevarec, G., S. Bouton, E. Jaspard, M.-T. Riou, J.-B. Cliquet, A. Suzuki, and A. M. Limami. 2004. Respective roles of the glutamine synthetase/glutamate synthase cycle and glutamate dehydrogenase in ammonium and amino acid metabolism during germination and post-germinative growth in the model legume Medicago truncatula. Planta 219(2) : 286-297. https://doi.org/10.1007/s00425-004-1214-9
  6. Gomez-Cadenas, A., R. Zentella, M. K. Walker-Simmons, and T.-H. D. Ho. 2001. Gibberellin/abscisic acid antagonism in barley aleurone cells: site of action of the protein kinase PKABA1 in relation to gibberellin signaling molecules. The Plant Cell 13(3) : 667-679. https://doi.org/10.1105/tpc.13.3.667
  7. Guan, M., I. S. Moller, and J. K. Schjoerring. 2015. Two cytosolic glutamine synthetase isoforms play specific roles for seed germination and seed yield structure in Arabidopsis. J. Exp. Bot. 66(1) : 203-212. https://doi.org/10.1093/jxb/eru411
  8. He, M., C. Zhu, K. Dong, T. Zhang, Z. Cheng, J. Li, and Y. Yan. 2015. Comparative proteome analysis of embryo and endosperm reveals central differential expression proteins involved in wheat seed germination. BMC Plant Biol. 15 : 97. https://doi.org/10.1186/s12870-015-0471-z
  9. Hihorst H. W. M. 1995. A critical update on seed dormancy. I. Primary dormancy. Seed Sci. Res. 5 : 61-73.
  10. Hirel, B., A. Martin, T. Terce‐Laforgue, M. B. Gonzalez‐Moro, and J. M. Estavillo. 2005. Physiology of maize I: a comprehensive and integrated view of nitrogen metabolism in a C4 plant. Physiol. Plant. 124(2) : 167-177. https://doi.org/10.1111/j.1399-3054.2005.00510.x
  11. Kacem, N. S., S. Mauro, Y. Muhovski, F. Delporte, J. Renaut, A. Djekoun, and B. Watillon. 2016. Diagonal two-dimensional electrophoresis (D-2DE): a new approach to study the effect of osmotic stress induced by polyethylene glycol in durum wheat (Triticum durum Desf.). Mol. Biol. Rep. 43(9) : 897-909. https://doi.org/10.1007/s11033-016-4028-5
  12. Kim, D. W., H. S. Kim, H. H. Park, J. J. Hwang, S. L. Kim, J. E. Lee, G. H. Jung, T. Y. Hwang, J. T. Kim, S. J. Kim, R. Randeep, and Y. U. Kwon. 2012. Characterization of grain amino acid composition and proteome profile of a high-lysine barley mutant line M98. Korean J. Crop Sci. 57(2) : 171-181. https://doi.org/10.7740/kjcs.2012.57.2.171
  13. Kim, K.-H., C.-S. Kang, J.-C. Park, S.-H. Shin, J.-N. Hyun, and C. S. Park. 2012. Evaluation of pre-harvest sprouting in Korean wheat cultivar. Kor. J. Breed. Sci. 44(4) : 526-537. https://doi.org/10.9787/KJBS.2012.44.4.526
  14. Kim, S. T., S. Y. Kang, W. Wang, S. G. Kim, D. H. Hwang, and K. Y. Kang. 2008. Analysis of embryonic proteome modulation by GA and ABA from germinating rice seeds. Proteomics 8(17) : 3577-3587. https://doi.org/10.1002/pmic.200800183
  15. Koziol, A. G., E. Loit, M. McNulty, A. J. MacFarlane, F. W. Scott, and I. Altosaar. 2012. Seed storage proteins of the globulin family are cleaved post-translationally in wheat embryos. BMC Res. Notes 5 : 385. https://doi.org/10.1186/1756-0500-5-385
  16. Kucera, B., M. A. Cohn, and G. Leubner-Metzger. 2005. Plant hormone interactions during seed dormancy release and germination. Seed Sci. Res. 15(4) : 281-307. https://doi.org/10.1079/SSR2005218
  17. Liu, A., F. Gao, Y. Kanno, M. Jordan, Y. Kamiya, M. Seo, and B. Ayele. 2013. Regulation of wheat seed dormancy by after-ripening is mediated by specific transcriptional switches that induce changes in seed hormone metabolism and signaling. PLoS One. 8 : 1-18.
  18. Liu, S. J., H. H. Xu, W. Q. Wang, N. Li, W. P. Wang, I. M. Moller, and S. Q. Song. 2015. A proteomic analysis of rice seed germination as affected by high temperature and ABA treatment. Physiol. Plant. 154(1) : 142-161. https://doi.org/10.1111/ppl.12292
  19. Mares, D. 1998. The seed coat and dormancy in wheat grains. In: WeiprtD (ed) Eighth International Symposium on Pre-harvest Sprouting in Cereals. Association of Cereal Research Federal Centre for Cereal Potato and Lipid Research. Detmold, Germany. pp: 77-81.
  20. Martinez-Lopez, N., M. Varela-Rey, U. Ariz, N. Embade, M. Vazquez-Chantada, D. Fernandez-Ramos, L. Gomez-Santos, S. C. Lu, J. M. Mato, and M.L. Martinez-Chantar. 2008. S-Adenosylmethionine and proliferation: new pathways, new targets. Biochem. Soc. T. 36 : 848-852. https://doi.org/10.1042/BST0360848
  21. Muller, K., S. Tintelnot, and G. Leubner-Metzger. 2006. Endosperm-limited Brassicaceae seed germination: abscisic acid inhibits embryo-induced endosperm weakening of Lepidium sativum (cress) and endosperm rupture of cress and Arabidopsis thaliana. Plant Cell Physiol. 47(7) : 864-877. https://doi.org/10.1093/pcp/pcj059
  22. Nyachiro, J. M., F. R. Clarke, R. M. DePauw, R. E. Knox, and K. C. Armstrong. 2002. The effects of cis-trans ABA on embryo germination and seed dormancy in wheat. Euphytica 126(1) : 129-133. https://doi.org/10.1023/A:1019684025082
  23. Pawlowski, T. A. 2007. Proteomics of European beech (Fagus sylvatica L.) seed dormancy breaking: Influence of abscisic and gibberellic acids. Proteomics 7(13) : 2246-2257. https://doi.org/10.1002/pmic.200600912
  24. Reddy, L., R. Metzger, and T. Ching. 1985. Effect of temperature on seed dormancy of wheat. Crop Sci. 25(3) : 455-458. https://doi.org/10.2135/cropsci1985.0011183X002500030007x
  25. Roje S. 2006. S-Adenosyl-L-methionine: beyond the universal methyl group donor. Phytochemistry 67: 1686-1698. https://doi.org/10.1016/j.phytochem.2006.04.019
  26. Saeedipour, S. 2013. Relationship of Grain Yield, ABA and proline accumulation in tolerant and sensitive wheat cultivars as affected by water stress. PNAS India B. 83(3) : 311-315.
  27. Schlereth, A., C. Becker, C. Horstmann, J. Tiedemann, and K. Muntz. 2000. Comparison of globulin mobilization and cysteine proteinases in embryonic axes and cotyledons during germination and seedling growth of vetch (Vicia sativa L.). J. Exp. Bot. 51(349) : 1423-1433. https://doi.org/10.1093/jexbot/51.349.1423
  28. Sharma, S., H. Dhaliwal, D. Multani, and S. Bains. 1994. Inheritance of preharvest sprouting tolerance in Triticum aestivum and its transfer to an amber-grained cultivar. J. Heredity 85(4) : 312-314. https://doi.org/10.1093/oxfordjournals.jhered.a111466
  29. Shen, B., C. Li, and M. C. Tarczynski. 2002. High free-methionine and decreased lignin content result from a mutation in the Arabidopsis S-adenosyl-L-methionine synthetase 3 gene. Plant J. 29 : 371-380. https://doi.org/10.1046/j.1365-313X.2002.01221.x
  30. Shevchenko, A., H. Tomas, J. Havlis, J. V. Olsen, and M. Mann. 2007. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 1(6) : 2856-2860. https://doi.org/10.1038/nprot.2006.468
  31. Shewry P. R. 2009. Wheat. J. Exp. Bot. 60(6) : 1537-1553. https://doi.org/10.1093/jxb/erp058
  32. Simpson G. M. 1990. Seed Dormancy in Grasses. Cambridge University Press. Cambridge. UK.
  33. Tanaka, N., H. Konishi, M. M. K. Khan, and S. Komatsu. 2004. Proteome analysis of rice tissues by two-dimensional electrophoresis: an approach to the investigation of gibberellin regulated proteins. Mol. Genet. Genomics 270(6) : 485-496. https://doi.org/10.1007/s00438-003-0929-9
  34. Walker-Simmons, M. 1987. ABA levels and sensitivity in developing wheat embryos of sprouting resistant and susceptible cultivars. Plant Physiol. Bioch. 84(1) : 61-66. https://doi.org/10.1104/pp.84.1.61
  35. Westermeier, R., T. Naven, and H.-R. Hopker. 2008. Proteomics in Practice : A Guide to Successful Experimental Design, 2nd, Completely Revised Edition. Wiley-VCH, Germany. pp: 309-356.
  36. Wolukau, J. N., S. L. Zhang, G. H. Xu, and D. Chen. 2004. The effect of temperature, polyamines and polyamine synthesis inhibitor on in vitro pollen germination and pollen tube growth of Prunus mume. Sci. Hort. 99 : 289-299. https://doi.org/10.1016/S0304-4238(03)00112-2
  37. Yang, Weibing, T. Cai, Y. Li, J. Guo, D. Peng, D. Yang, Y. Yin, and Z. Wang. 2013. Effects of exogenous abscisic acid and gibberellic acid on filling process and nitrogen metabolism characteristics in wheat grains. Aust. J. Crop. Sci. 7(1) : 58-65.
  38. Yu, H., L. L. Wang, X. Y. Chen, Y. Yang, X. R. Yu, Z. Wang, and F. Xiong. 2016. Effects of exogenous gibberellic acid and abscisic acid on germination, amylases, and endosperm structure of germinating wheat seeds. Seed Sci. Technol. 44(1) : 64-76. https://doi.org/10.15258/sst.2016.44.1.09
  39. Yu, Y. L., S. M. Zhen, S. Wang, Y. P. Wang, H. Cao, Y. Z. Zhang, J. R. Li, and Y. M. Yan. 2016. Comparative transcriptome analysis of wheat embryo and endosperm responses to ABA and $H_2O_2$ stresses during seed germination. BMC Genomics 17(1) : 97. https://doi.org/10.1186/s12864-016-2416-9
  40. Zhang, X., S. Liu, and T. Takano. 2008. Two cysteine proteinase inhibitors from Arabidopsis thaliana, AtCYSa and AtCYSb, increasing the salt, drought, oxidation and cold tolerance. Plant Mol. Biol. 68(1-2) : 131-143. https://doi.org/10.1007/s11103-008-9357-x