DOI QR코드

DOI QR Code

비대칭형 분계점 실현변동성의 제안 및 응용

A threshold-asymmetric realized volatility for high frequency financial time series

  • 김지연 (숙명여자대학교 통계학과) ;
  • 황선영 (숙명여자대학교 통계학과)
  • Kim, J.Y. (Department of Statistics, Sookmyung Women's University) ;
  • Hwang, S.Y. (Department of Statistics, Sookmyung Women's University)
  • 투고 : 2018.01.08
  • 심사 : 2018.02.25
  • 발행 : 2018.04.30

초록

본 논문에서는 모형 기반 GARCH 변동성, 실현변동성(realized volatility; RV), 역사적 변동성(historical volatility), 지수가중이동평균(exponentially weighted moving average; EWMA) 등 다양한 변동성 추정 방법을 소개하고, 실현변동성에 비대칭 효과(leverage effect)를 반영한 분계점 실현변동성(threshold-asymmetric realized volatility; T-RV)을 제안하였다. 또한, 예시를 위해 KOSPI 고빈도 수익률 자료의 변동성을 분석하였다.

This paper is concerned with volatility computations for high frequency time series. A threshold-asymmetric realized volatility (T-RV) is suggested to capture a leverage effect. The T-RV is compared with various conventional volatility computations including standard realized volatility, GARCH-type volatilities, historical volatility and exponentially weighted moving average volatility. High frequency KOSPI data are analyzed for illustration.

키워드

참고문헌

  1. Barndorff-Nielson, O. E., Hansen, P. R., Lunde, A., and Shephard, N. (2008). Designing realized kernels to measure the ex-post variation of equity prices in the presence of noise, Econometrica, 76, 1481-1536. https://doi.org/10.3982/ECTA6495
  2. Barndorff-Nielson, O. E., Hansen, P. R., Lunde, A., and Shephard, N. (2009). Realized kernels in practice: trades and quotes, Econometrics Journal, 12, C1-C32. https://doi.org/10.1111/j.1368-423X.2008.00275.x
  3. Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity, Journal of Econometrics, 31, 307-327. https://doi.org/10.1016/0304-4076(86)90063-1
  4. Choi, M. S., Park, J. A., and Hwang, S. Y. (2012). Asymmetric GARCH processes featuring both threshold effect and bilinear structure, Statistics & Probability Letters, 82, 419-426. https://doi.org/10.1016/j.spl.2011.11.023
  5. Ding, Z., Granger, C. W., and Engle, R. F. (1993). A long memory property of stock market returns and a new model, Journal of Empirical Finance, 1, 83-106. https://doi.org/10.1016/0927-5398(93)90006-D
  6. Engle, R. F. and Lee, G. G. (1993). A permanent and transitory component model of stock return volatility, Discussion paper, (pp. 92-44), University of California at San Diego, Economics Working Paper Series.
  7. Jin, M. K., Yoon, J. E., and Hwang, S. Y. (2017). Choice of frequency via principal component for high-frequency volatility models, Korean Journal of Applied Statistics, 30, 747-757. https://doi.org/10.5351/KJAS.2017.30.5.747
  8. Kim, H. and Lee, M. (2005). Econometrics and Financial Time Series, Kyungmunsa, Seoul.
  9. Lee, G. J. and Hwang, S. Y. (2017). Multivariate volatility for high-frequency financial series, The Korean Journal of Applied Statistics, 30, 169-180. https://doi.org/10.5351/KJAS.2017.30.1.169
  10. Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: a new approach, Econometrica, 59, 347-370. https://doi.org/10.2307/2938260
  11. Rabemananjara, R. and Zakoian, J. M. (1993). Threshold ARCH models and asymmetries in volatility, Journal of Applied Econometrics, 8, 31-49. https://doi.org/10.1002/jae.3950080104
  12. Sentana, E. (1995). Quadratic ARCH models, Review of Economic Studies, 62, 639-661. https://doi.org/10.2307/2298081
  13. Tsay, R. S. (2010). Analysis of Financial Time Series (3rd ed), Wiley, New York.
  14. Yoon, J. E. and Hwang, S. Y. (2015). Volatility computations for financial time series: high frequency and hybrid method, Korean Journal of Applied Statistics, 28, 1163-1170. https://doi.org/10.5351/KJAS.2015.28.6.1163