DOI QR코드

DOI QR Code

Two-Switch Non-Isolated Step-Up DC-DC Converter

  • Nguyen, Minh-Khai (Department of Electrical Engineering, Chosun University) ;
  • Choi, Youn-Ok (Department of Electrical Engineering, Chosun University) ;
  • Cho, Geum-Bae (Department of Electrical Engineering, Chosun University) ;
  • Lim, Young-Cheol (Department of Electrical Engineering, Chonnam National University)
  • Received : 2017.06.17
  • Accepted : 2017.11.01
  • Published : 2018.05.20

Abstract

This paper suggests a new non-isolated high voltage gain DC-DC converter with two switches. The proposed two-switch converter has the following characteristics: a high voltage gain, a continuous input current with a small ripple, a reduction in the size of the inductor, and a simple circuit with only a few elements. A theoretical analysis, guidelines for parameter selection, and a comparison with conventional non-isolated high step-up converters are presented. A prototype of 250 W is set up to demonstrate the correctness of the proposed converter. Results obtained from simulations and experiments are presented.

Keywords

References

  1. W. Li and X. He, "Review of nonisolated high-step-up dc/dc converters in photovoltaic grid-connected applications," IEEE Trans. Ind. Electron., Vol. 58, No. 4, pp. 1239-1250, Apr. 2011. https://doi.org/10.1109/TIE.2010.2049715
  2. J. C. Hernandez, M. C. Mira, G. Sen, O. C. Thomsen, and Michael A. E. Andersen, "Isolated boost converter with bidirectional operation for supercapacitor applications," J. Power Electron., Vol. 13, No. 4, pp. 507-515, Jul. 2013. https://doi.org/10.6113/JPE.2013.13.4.507
  3. M. K. Nguyen, Y. C. Lim, J. H. Choi and G. B. Cho, "Isolated high step-up dc-dc converter based on quasiswitched-boost network" IEEE Trans. Ind. Electron., Vol. 63, No. 12, pp. 7553-7562, Dec. 2016. https://doi.org/10.1109/TIE.2016.2586679
  4. H. Liu, H. Hu, H. Wu, Y. Xing, and I. Batarseh, "Overview of high-step-up coupled-inductor boost converters," IEEE J. Emerg. Sel. Topics Power Electron., Vol. 4, No. 2, pp. 689-704, Jun. 2016. https://doi.org/10.1109/JESTPE.2016.2532930
  5. J. I. Kang, S. K. Han, and J. H. Han, "Lossless snubber with minimum voltage stress for continuous current mode tapped-inductor boost converters for high step-up applications," J. Power Electron., Vol. 14, No. 4, pp. 621-631, Jul. 2014. https://doi.org/10.6113/JPE.2014.14.4.621
  6. B. Axelrod, Y. Beck, and Y. Berkovich, "High step-up dc-dc converter based on the switched-coupled-inductor boost converter and diode-capacitor multiplier: steady state and dynamics," IET Power Electron., Vol. 8, No. 8, pp. 1420-1428, 2015. https://doi.org/10.1049/iet-pel.2014.0785
  7. Y. P. Siwakoti, F. Blaabjerg, and P. C. Loh, "High step-up trans-inverse (Tx-1) DC-DC converter for the distributed generation system," IEEE Trans. Ind. Electron., Vol. 63, No. 7, pp. 4278-4291, Jul. 2016. https://doi.org/10.1109/TIE.2016.2546854
  8. A. I. Bratcu, I. Munteanu, S. Bacha, D. Picault, and B. Raison, "Cascaded DC-DC converter photovoltaic systems: power optimization issues," IEEE Trans. Ind. Electron., Vol. 58, No. 2, pp. 403-411, Feb. 2011. https://doi.org/10.1109/TIE.2010.2043041
  9. M. Zhu, and F. L. Luo, "Enhanced self-lift Cuk converter for negative-to-positive voltage conversion," IEEE Trans. Power Electron, Vol. 25, No. 9, pp. 2227-2233, Sep. 2010. https://doi.org/10.1109/TPEL.2010.2047269
  10. F. S. Garcia, J. A. Pomilio, and G. Spiazzi, "Modeling and control design of the interleaved double dual boost converter," IEEE Trans. Ind. Electron., Vol. 60, No. 8, pp. 3283-3290, Aug. 2013. https://doi.org/10.1109/TIE.2012.2203770
  11. Y. Jiao, F. L. Luo, and M. Zhu, "Voltage-lift-type switched-inductor cells for enhancing DC-DC boost ability: principles and integrations in Luo converter," IET Power Electron., Vol. 4, No. 1, pp. 131-142, Jan. 2011. https://doi.org/10.1049/iet-pel.2010.0021
  12. J. C. Rosas-Caro, J. M. Ramirez, F. Z. Peng, and A. Valderrabano, "A dc-dc multilevel boost converter," IET Power Electron., Vol. 3, No. 11, pp. 129-137, Jan. 2010. https://doi.org/10.1049/iet-pel.2008.0253
  13. G. Wu, X. Ruan, and Z. Ye, "Nonisolated high step-up DC-DC converters adopting switched-capacitor cell," IEEE Trans. Ind. Electron., Vol. 62, No. 1, pp. 383-393, Jan. 2015. https://doi.org/10.1109/TIE.2014.2327000
  14. B. Axelrod, Y. Berkovich, and A. Ioinovici, "Switchedcapacitor/switched-inductor structures for getting transformerless hybrid dc-dc PWM converters," IEEE Trans. Circuits Syst. I, Reg. Papers, Vol. 55, No. 2, pp. 687-696, Mar. 2008. https://doi.org/10.1109/TCSI.2008.916403
  15. Y. P. Hsieh, J. F. Chen, T. J. Liang, and L. S. Yang, "Novel high step-up DC-DC converter with coupled-inductor and switched-capacitor techniques," IEEE Trans. Ind. Electron., Vol. 59, No. 2, pp. 998-1007, Feb. 2012. https://doi.org/10.1109/TIE.2011.2151828
  16. Y. J. A. Alcazar, D. S. Oliveira, Jr., F.L. Tofoli, and R. P. Torrico-Bascope, "DC-DC Nonisolated boost converter based on the three-state switching cell and voltage multiplier cells," IEEE Trans. Ind. Electron., Vol. 60, No. 10, pp. 4438-4449, Oct. 2013. https://doi.org/10.1109/TIE.2012.2213555
  17. L. S. Yang, T. J. Liang, and J. F. Chen, "Transformerless DC-DC converters with step-up voltage gain," IEEE Trans. Ind. Electron., Vol. 56, No. 8, pp. 3144-3152, Aug. 2009. https://doi.org/10.1109/TIE.2009.2022512
  18. Y. Tang, D. Fu, T. Wang, and Z. Xu, "Hybrid switchedinductor converters for high step-up conversion," IEEE Trans. Ind. Electron., Vol. 62, No. 3, pp. 1480-1490, Mar. 2015. https://doi.org/10.1109/TIE.2014.2364797
  19. P. Galigekere and M. K. Kazimierczuk, "Analysis of PWM Z-source dc-dc converter in CCM for steady state," IEEE Trans. Circuits Syst. I, Reg. Papers, Vol. 59, No. 4, pp. 854-863, 2012. https://doi.org/10.1109/TCSI.2011.2169742
  20. D. Cao and F. Z. Peng, "A family of Z-source and quasi-Z-source dc-dc converter," in Proc. IEEE Applied Power Electronics Conf., pp. 1097-1101, 2009.
  21. H. Shen, B. Zhang, D. Qiu, and L. Zhou, "A common grounded Z-source dc-dc converter with high voltage gain," IEEE Trans. Ind. Electron., Vol. 63, No. 5, pp. 2925-2935, May 2016. https://doi.org/10.1109/TIE.2016.2516505
  22. G. Zhang, B. Zhang, Z. Li, D. Qiu, L. Yang, and W. A. Halang, "A 3-Z-network boost converter," IEEE Trans. Ind. Electron., Vol. 62, No.1, pp. 278-288, Jan. 2015. https://doi.org/10.1109/TIE.2014.2326990
  23. Y. P. Siwakoti, P. C. Loh, F. Blaabjerg, S. J. Andreasen, and G. E. Town, “Y-source boost dc/dc converter for distributed generation,” IEEE Trans. Ind. Electron., Vol. 62, No. 2, pp. 1059-1069, Feb. 2015. https://doi.org/10.1109/TIE.2014.2345336
  24. S. Mishra, R. Adda, and A. Joshi, “Inverse Watkins-Johnson topology based inverter,” IEEE Trans. Power Electron., Vol. 27, No. 3, pp. 1066-1070, Mar. 2012. https://doi.org/10.1109/TPEL.2011.2177278
  25. M. K. Nguyen, T. V. Le, S. J. Park, and Y. C. Lim, "A class of quasi-switched boost inverters," IEEE Trans. Ind. Electron., Vol. 62, No.3, pp. 1526-1536, Mar. 2015. https://doi.org/10.1109/TIE.2014.2341564
  26. M. K. Nguyen, T. D. Duong, and Y. C. Lim, "Switched-capacitor-based dual-switch high-boost dc-dc converter," IEEE Trans. Power Electron., to be published.
  27. K. J. Astrom and T. Hagglund, PID Controllers: Theory, Design and Tuning, Research Triangle Park, NC, USA: ISA, 1995.