DOI QR코드

DOI QR Code

The Characteristics of Group and Classroom Discussions in Socioscientific Issues Classes

과학관련 사회쟁점(SSI) 수업의 소집단 토론과 전체 학급 토론에서 나타나는 특징

  • Received : 2018.01.29
  • Accepted : 2018.03.22
  • Published : 2018.04.30

Abstract

In this study, we investigated the argumentations of group and classroom discussions in socioscientific issues (SSI) discussion classes. Twenty-seven high school students participated in the SSI discussion classes on nuclear power generation. We observed and recorded the classes and also conducted semi-structured interviews. For the analyses, we revised a previous framework that was developed to analyze dialogic argumentations in the context of SSI. The analyses of the results indicated that there were more discourse schemes in the classroom discussions than the group discussions which are related to awareness and openness to multiple perspectives, evidence based reasoning, and on-going inquiry and skepticism. And there were few discourse schemes related to moral and ethical sensitivity in the group and classroom discussions. Various grounds, data, and information were presented in the classroom discussions. Students concentrated on carrying their claims and were not able to sympathize with and accept other opinions. Therefore, there were few discourse schemes to reach consensus. In addition, they perceived classroom discussions as competitive and actively rebutted other claims or grounds. The levels of argumentation were also high in the classroom discussions. The group discussions were held in relaxed atmosphere, and they asked the opponents more for clarification or additional information and evidences. However, classroom discussions were held in serious atmosphere, and they actively queried the validity of the claims or grounds. Based on the results, some suggestions to implement SSI discussion classes were discussed.

이 연구에서는 SSI 토론 수업에서 이루어지는 소집단 토론과 전체학급 토론의 논증활동을 분석하였다. 경기도에 소재한 고등학교에 재학중인 1학년 학생 27명을 대상으로 원자력 발전을 주제로 한 SSI 토론 수업을 진행하였다. 수업을 관찰 및 녹화하였고, 수업을 모두 마친 이후 일부 학생을 대상으로 반구조화된 면담을 실시하였다. SSI 맥락에서 이루어지는 논증활동을 분석하기 위해 개발된 선행 연구의 분석틀을 수정 보완하여 사용하였다. 연구 결과, 다양한 관점의 고려, 증거에 기반한 추론, 지속적인 탐구와 회의적 사고와 관련된 담화요소는 소집단 토론보다 전체 학급 토론에서 더욱 높은 비율로 등장하였고, 도덕 윤리적 민감성을 고려한 담화요소는 토론 전반에서 거의 등장하지 않았다. 전체 학급 토론에서는 새로운 근거와 정보 및 자료가 다양하게 등장하였다. 학생들은 자신의 주장을 관철하는 것에만 집중하여 다른 의견을 공감 및 인정하지 못하였고, 이에 따라 합의를 이루기 위한 담화요소도 거의 나타나지 않았다. 또한 학생들은 전체 학급토론을 경쟁적인 분위기로 인식하여 상대방의 주장 또는 근거에 적극적으로 반박하였고, 논증활동의 수준 또한 전체 학급 토론이 높은 것으로 나타났다. 소집단 토론은 편안한 분위기에서 이루어져 명료화와 추가정보 및 증거 요구가 활발하게 이루어졌으나 전체 학급 토론은 진지하고 엄숙한 분위기에서 주장 또는 근거의 타당성에 대한 의문제기가 활발히 이루어졌다. 이러한 연구 결과를 바탕으로 SSI 토론 수업을 효과적으로 진행하기 위한 방안을 논의하였다.

Keywords

References

  1. Albe, V. (2008). When scientific knowledge, daily life experience, epistemological and social considerations intersect: Students' argumentation in group discussions on a socio-scientific issue. Research in Science Education, 38(1), 67-90. https://doi.org/10.1007/s11165-007-9040-2
  2. Chang, S., & Chiu, M. (2008). Lakatos’ scientific research programmes as a framework for analysing informal argumentation about socio-scientific issues. International Journal of Science Education, 30(13), 1753-1773. https://doi.org/10.1080/09500690701534582
  3. Clark, D. B., & Sampson, V. (2008). Assessing dialogic argumentation in online environments to relate structure, grounds, and conceptual quality. Journal of Research in Science Teaching, 45(3), 293-321. https://doi.org/10.1002/tea.20216
  4. Erduran, S. (2007). Methodological foundations in the study of argumentation in science classrooms. In Erduran, S., & Jiménez-Aleixandre, M. P. (Eds.), Argumentation in science education (pp. 47-69). Dordrecht, NL: Springer.
  5. Evagorou, M., & Osborne, J. (2013). Exploring young students’ collaborative argumentation within a socioscientific issue. Journal of Research in Science Teaching, 50(2), 209-237. https://doi.org/10.1002/tea.21076
  6. Halverson, K. L., Siegel, M. A., & Freyermuth, S. K. (2009). Lenses for framing decisions: Undergraduates’ decision making about stem cell research. International Journal of Science Education, 31(9), 1249-1268. https://doi.org/10.1080/09500690802178123
  7. Johnson, D. W., & Johnson, R. T. (1994). The pro-con cooperative group strategy: Structuring academic controversy within the social studies classroom. In Stahl, R. J. (Ed.), Cooperative learning in social studies: A handbook for teachers (pp. 306-331). Menlo Park, CA: Addison-Wesley.
  8. Kim, M., Anthony, R., & Blades, D. (2014). Decision making through dialogue: A case study of analyzing preservice teachers’ argumentation on socioscientific issues. Research in Science Education, 44(6), 903-926. https://doi.org/10.1007/s11165-014-9407-0
  9. Ko, H. (2009). A study of a thinking process in elementary school student by applying the issues-centered cooperative learning model. Social Studies Education, 48(3), 57-73.
  10. Ko, Y., Choi, Y., & Lee, H. (2015). Development of an analytical framework for dialogic argumentation in the context of socioscientific issues: Based on discourse clusters and schemes. Journal of the Korean Association for Science Education, 35(3), 509-521. https://doi.org/10.14697/jkase.2015.35.3.0509
  11. Ko, Y., & Shin, W. (2011) An analysis of discussion using online discussion forum and smart phone. The Korea Educational Review, 17(3), 129-150.
  12. Kolsto, S. D. (2001). Scientific literacy for citizenship: Tools for dealing with the science dimension of controversial socioscientific issues. Science Education, 85(3), 291-310. https://doi.org/10.1002/sce.1011
  13. Kwon, H., Kim, M., Kim, S., & Noh, T. (2017). The patterns of analogy change and the characteristics of discussions in collaborative activity of self-generated analogy. Journal of the Korean Association for Science Education, 37(3), 407-416. https://doi.org/10.14697/JKASE.2017.37.3.407
  14. Lee, H., & Chang, H. (2012). Patterns of pre-service science teachers’ use of evidence in web-based discussions of the nuclear power generation issue. New Physics: Sae Mulli, 62(4), 364-373. https://doi.org/10.3938/NPSM.62.364
  15. Lee, H., Choi, Y., & Ko, Y. (2014). Designing collective intelligence-based instructional models for teaching socioscientific issues. Journal of the Korean Association for Science Education, 34(6), 523-534. https://doi.org/10.14697/jkase.2014.34.6.0523
  16. Lee, E., Lee, E., & Chung, Y. (2016). Effects of socioscientific issues (SSI) programs on enhancing high school students' moral judgement and SSI reasoning skills. Journal of Learner-Centered Curriculum and Instruction, 16(8), 219-237.
  17. Millar, R. (2006). Twenty first century science: Insights from the design and implementation of a scientific literacy approach in school science. International Journal of Science Education, 28(13), 1499-1521. https://doi.org/10.1080/09500690600718344
  18. Ministry of Education (2015). 2015 revised national curriculum of science. Seoul: Ministry of Education.
  19. Nam, H., Kang, H., & Noh, T. (2017). Features of using smart devices in socioscientific issues debate classes. Journal of the Korean Association for Science Education, 37(5), 787-797. https://doi.org/10.14697/JKASE.2017.37.5.787
  20. Oh, S., & Jonassen, D. H. (2007). Scaffolding online argumentation during problem solving. Journal of Computer Assisted Learning, 23(2), 95-110. https://doi.org/10.1111/j.1365-2729.2006.00206.x
  21. Park, J.-Y., & Kim, H.-B. (2011). Analyzing group interaction process of pre-service elementary school teachers' argumentation on socio-scientific issues. Biology Education, 39(4), 653-673. https://doi.org/10.15717/bioedu.2011.39.4.653
  22. Park, J.-Y., & Kim, H.-B. (2012). Theoretical considerations on analytical framework design for the interactions between participants in group argumentation on socio-scientific issues. Journal of the Korean Association for Science Education, 32(4), 604-624. https://doi.org/10.14697/jkase.2012.32.4.604
  23. Patronis, T., Potari, D., & Spiliotopoulou, V. (1999). Students' argumentation in decision making on a socio-scientific issue: Implications for teaching. International Journal of Science Education, 21(7), 745-754. https://doi.org/10.1080/095006999290408
  24. Sadler, T. D., Barab, S. A., & Scott, B. (2007). What do students gain by engaging in socioscientific inquiry?. Research in Science Education, 37(4), 371-391. https://doi.org/10.1007/s11165-006-9030-9
  25. Sadler, T. D., Chambers, F. W., & Zeidler, D. L. (2004). Student conceptualizations of the nature of science in response to a socioscientific issue. International Journal of Science Education, 26(4), 387-409. https://doi.org/10.1080/0950069032000119456
  26. Sadler, T. D., & Zeidler, D. L. (2004). The morality of socioscientific issues: Construal and resolution of genetic engineering dilemmas. Science Education, 88(1), 4-27. https://doi.org/10.1002/sce.10101
  27. Yang, C., Kim, S., Jo, M., & Noh, T. (2016). The characteristics of group and classroom discussions in the scientific modeling of the particulate model of matter. Journal of the Korean Association for Science Education, 36(3), 361-369. https://doi.org/10.14697/jkase.2016.36.3.0361
  28. Zeidler, D. L., & Kahn, S. (2014). It's debatable!: Using socioscientific issues to develop scientific literacy. Arlington, VA: NSTA Press.
  29. Zeidler, D. L., & Keefer, M. (2003). The role of moral reasoning and the status of socioscientific issues in science education. In Zeidler, D. L. (Ed), The role of moral reasoning on socioscientific issues and discourse in science education (pp. 7-38). Dordrecht, NL: Springer.
  30. Zeidler, D. L., Sadler, T. D., Simmons, M. L., & Howes, E. V. (2005). Beyond STS: A research-based framework for socio-scientific issues education. Science Education, 89(3), 357-377. https://doi.org/10.1002/sce.20048
  31. Zeidler, D. L., Walker, K. A., Ackett, W. A., & Simmons, M. L. (2002). Tangled up in views: Beliefs in the nature of science and responses to socioscientific dilemmas. Science Education, 86(3), 343-367. https://doi.org/10.1002/sce.10025

Cited by

  1. 초등 예비교사의 대체에너지에 대한 이해도와 대안개념 분석 vol.40, pp.1, 2021, https://doi.org/10.15267/keses.2021.40.1.36