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ON SYMMETRIC BI-MULTIPLIERS OF SUBTRACTION

ALGEBRAS

Kyung Ho Kim*

Abstract. In this paper, we introduce the notion of symmetric
bi-multiplier of subtraction algebra and investigate some related
properties. Also, we prove that if D is a symmetric bi-multiplier of
X, then D is an isotone symmetric bi-multiplier of X.

1. Introduction

B. M. Schein ([4]) considered systems of the form (Φ; ◦, \), where Φ
is a set of functions closed under the composition “◦” of functions (and
hence (Φ; ◦) is a function semigroup) and the set theoretic subtraction
“\” (and hence (Φ; \) is a subtraction algebra in the sense of ([1]). He
proved that every subtraction semigroup is isomorphic to a difference
semigroup of invertible functions. B. Zelinka ([6]) discussed a problem
proposed by B. M. Schein concerning the structure of multiplication in a
subtraction semigroup. He solved the problem for subtraction algebras
of a special type, called the atomic subtraction algebras. In this paper,
we introduce the notion of symmetric bi-multiplier of subtraction algebra
and investigated some related properties. Also, we prove that if D is
a symmetric bi-multiplier of X, then D is an isotone symmetric bi-
multiplier of X.

2. Preliminaries

By a subtraction algebra we mean an algebra (X;−) with a single
binary operation “−” that satisfies the following identities: for any
x, y, z ∈ X,
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(S1) x− (y − x) = x;
(S2) x− (x− y) = y − (y − x);
(S3) (x− y)− z = (x− z)− y.

The last identity permits us to omit parentheses in expressions of the
form (x − y) − z. The subtraction determines an order relation on X:
a ≤ b ⇔ a− b = 0, where 0 = a− a is an element that does not depend
on the choice of a ∈ X. The ordered set (X;≤) is a semi-Boolean algebra
in the sense of [1], that is, it is a meet semilattice with zero 0 in which
every interval [0, a] is a Boolean algebra with respect to the induced
order. Here a ∧ b = a− (a− b); the complement of an element b ∈ [0, a]
is a− b; and if b, c ∈ [0, a], then

b ∨ c = (b′ ∧ c′)′ = a− ((a− b) ∧ (a− c))
= a− ((a− b)− ((a− b)− (a− c))).

In a subtraction algebra X, the following are true (see [4]):

(p1) (x− y)− y = x− y for any x, y ∈ X.
(p2) x− 0 = x and 0− x = 0 for any x ∈ X.
(p3) (x− y)− x = 0 for any x, y ∈ X.
(p4) x− (x− y) ≤ y for any x, y ∈ X.
(p5) (x− y)− (y − x) = x− y for any x, y ∈ X.
(p6) x− (x− (x− y)) = x− y for any x, y ∈ X.
(p7) (x− y)− (z − y) ≤ x− z for any x, y, z ∈ X.
(p8) x ≤ y for any x, y ∈ X if and only if x = y − w for some w ∈ X.
(p9) x ≤ y implies x− z ≤ y − z and z − y ≤ z − x for all z ∈ X.
(p10) x, y ≤ z implies x− y = x ∧ (z − y) for any x, y, z ∈ X.
(p11) (x ∧ y)− (x ∧ z) ≤ x ∧ (y − z) for any x, y, z ∈ X.
(p12) (x− y)− z = (x− z)− (y − z). for any x, y, z ∈ X.

A mapping d from a subtraction algebra X to a subtraction algebra
Y is called a morphism if d(x − y) = d(x) − d(y) for all x, y ∈ X. A
self map d of a subtraction algebra X which is a morphism is called an
endomorphism.

Lemma 2.1. Let X be a subtraction algebra. Then the following
properties hold:

(1) x ∧ y = y ∧ x for every x, y ∈ X.
(2) x− y ≤ x for all x, y ∈ X.

Lemma 2.2. Every subtraction algebra X satisfies the following prop-
erty.

(x− y)− (x− z) ≤ z − y
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for all x, y, z ∈ X.

Definition 2.3. Let X be a subtraction algebra and Y a non-empty
subset of X. Then Y is called a subalgebra if x − y ∈ Y whenever
x, y ∈ Y.

Definition 2.4. Let X be a subtraction algebra. A mapping D :
X × X → X is called symmetric if D(x, y) = D(y, x) holds for all
x, y ∈ X.

Definition 2.5. Let X be a subtraction algebra. A mapping d(x) =
D(x, x) is called trace of D(., .) where D : X ×X → X is a symmetric
mapping.

3. Symmetric bi-multipliers of subtraction algebras

In what follows, let X denote a subtraction algebras unless otherwise
specified.

Definition 3.1. Let X be a subtraction algebra and D be a symmet-
ric map. A function D : X ×X → X is called a symmetric bi-multiplier
on X if it satisfies the following condition

D(x ∧ z, y) = D(x, y) ∧ z

for all x, y, z ∈ X.

Example 3.2. Let X = {0, a, b, c} be a set in which “−” is defined
by

− 0 a b c
0 0 0 0 0
a a 0 a 0
b b b 0 0
c c b a 0

.

It is easy to check that (X;−) is a subtraction algebra. Define a map
D : X ×X → X by
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D(x, y) =



0 if x = 0 or y = 0

a if (x, y) = (a, a)

b if (x, y) = (b, b)

c if (x, y) = (c, c)

0 if (x, y) = (b, a), (a, b)

a if (x, y) = (a, c), (c, a)

b if (x, y) = (b, c), (c, b) .

Then it is easily checked that D is a symmetric bi-multiplier of X.

Proposition 3.3. Let X be a subtraction algebra and let D be a
symmetric bi-multiplier of X. Then D(0, x) = 0 for all x ∈ X.

Proof. For all x ∈ X, we get

D(0, x) = D(0 ∧ 0, x)

= D(0, x) ∧ 0 = 0.

This completes the proof.

Proposition 3.4. Let X be a subtraction algebra and let D be a
symmetric bi-multiplier of X with the trace d. Then d(x) ≤ x for all
x ∈ X.

Proof. Since x ∧ x = x, we have

d(x) = D(x, x)

= D(x ∧ x, x) = D(x, x) ∧ x
= d(x) ∧ x

for all x ∈ X. Therefore d(x) ≤ x for all x ∈ X by (S2) and (p4).

Proposition 3.5. Let X be a subtraction algebra and let D be a
symmetric bi-multiplier of X. Then D(x, y) ≤ x and D(x, y) ≤ y for all
x, y ∈ X.

Proof. Since x ∧ x = x, we have

D(x, y) = D(x ∧ x, y)
= D(x, y) ∧ x

for all x ∈ X. Therefore D(x, y) ≤ x for all x, y ∈ X by (S2) and (p4).
Similarly, we see that D(x, y) ≤ y for all x, y ∈ X.
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Theorem 3.6. Let X be a subtraction algebra and let D be a sym-
metric bi-multiplier of X with the trace d. Then d is an isotone mapping
on X.

Proof. Let x ≤ y. Then x− y = 0. Hence we have

d(x) = D(x, x) = D(x ∧ y, x ∧ y)
= D(y ∧ x, x ∧ y) = D(y, x ∧ y) ∧ x
= D(y ∧ x, y) ∧ x = (D(y, y) ∧ x) ∧ x
≤ D(y, y) ∧ x ≤ D(y, y) = d(y).

This implies that d is an isotone mapping on X.

LetX be a subtraction algebra and letD be a symmetric bi-multiplier
of X. For a fixed element a ∈ X, define a map da : X → X by da(x) =
D(x, a) for all x ∈ X.

Proposition 3.7. Let X be a subtraction algebra and let D be a
symmetric bi-multiplier of X. Then the following conditions hold:

(1) da(x) = da(x) ∧ x for every x ∈ X.
(2) If x ≤ y, then da(x) = da(x) ∧ y for x, y ∈ X.

Proof. (1) For every x ∈ X, we have

da(x) = D(x, a) = D(x ∧ x, a)
= D(x, a) ∧ x = da(x) ∧ x.

(2) Let x, y ∈ X be such that x ≤ y. Then x− y = 0. Hence

da(x) = D(x, a) = D(x− (x− y), a)

= D(x ∧ y, a) = D(x, a) ∧ y = da(x) ∧ y.
This completes the proof.

Proposition 3.8. Let X be a subtraction algebra and let D be a
symmetric bi-multiplier of X. Then da is an isotone mapping on X.

Proof. Let x, y ∈ X be such that x ≤ y. Then x− y = 0. Hence

da(x) = D(x, a) = D(x− (x− y), a)

= D(x ∧ y, a) = D(y ∧ x, a)
= D(y, a) ∧ x ≤ D(y, a) = da(y).

This implies that da is an isotone mapping on X.

Proposition 3.9. Let X be a subtraction algebra and let D be a
symmetric bi-multiplier of X. Then da is regular, that is, da(0) = 0.
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Proof. Let X be a subtraction algebra and let D be a symmetric
bi-multiplier of X.

da(0) = D(0, a) = D(0 ∧ 0, a)

= D(0, a) ∧ 0 = 0.

This implies that da is regular.

Proposition 3.10. Let X be a subtraction algebra and let D be a
symmetric bi-multiplier of X. Then da(x ∧ y) ≤ da(x) for all x, y ∈ X.

Proof. Let X be a subtraction algebra and let D be a symmetric
bi-multiplier of X.

da(x ∧ y) = D(x ∧ y, a) = D(x, a) ∧ y
= da(x) ∧ y ≤ da(x).

This completes the proof.

Definition 3.11. Let X be a subtraction algebra and let D be a
symmetric bi-multiplier of X. If x ≤ w implies D(x, y) ≤ D(w, y) for
every y ∈ X, D is called an isotone symmetric bi-multiplier of X.

Theorem 3.12. Let X be a subtraction algebra and let D be a sym-
metric bi-multiplier on X. Then D is an isotone symmetric bi-multiplier
of X.

Proof. Let x ≤ y. Then x− y = 0. Hence we have

D(x, z) = D(x− (x− y), z) = D(x ∧ y, z)
= D(y ∧ x, z) = D(y, z) ∧ x
≤ D(y, z)

for all z ∈ X. This implies that D is an isotone symmetric bi-multiplier
of X.

LetX be a subtraction algebra and letD be a symmetric bi-multiplier
of X with the trace d. Define a set Fixd(X) by

Fixd(X) = {x ∈ X | d(x) = x}.

Proposition 3.13. Let X be a subtraction algebra and let D be
a symmetric bi-multiplier of X with the trace d. If x ∈ Fixd(X) and
y ∈ X, then x ∧ y ∈ Fixd(X).
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Proof. Let x ∈ Fixd(X). Then d(x) = x. Hence

d(x ∧ y) = D(x ∧ y, x ∧ y) = D(x, x ∧ y) ∧ y
= D(x ∧ y, x) ∧ y = (D(x, x) ∧ y) ∧ y
= (d(x) ∧ y) ∧ y = (x ∧ y) ∧ y
= x ∧ y,

since x ∧ y ≤ y for all x, y ∈ X. This implies that x ∧ y ∈ Fixd(X).

Proposition 3.14. Let X be a subtraction algebra and let D be a
symmetric bi-multiplier of X with the trace d. Then Fixd(X) is a down
closed set, that is, y ∈ Fixd(X) and x ≤ y implies x ∈ Fixd(X).

Proof. Let y ∈ Fixd(X) and x ≤ y. Then d(y) = y. Hence

d(x) = D(x, x) = D(x ∧ y, x ∧ y)) = D(y ∧ x, y ∧ x)
= D(y, y ∧ x) ∧ x = (D(y ∧ x, y) ∧ x
= (D(y, y) ∧ x) ∧ x = (d(y) ∧ x) ∧ x = (y ∧ x) ∧ x
= x.

This implies that x ∈ Fixd(X).

LetX be a subtraction algebra and letD be a symmetric bi-multiplier
of X with the trace d. Define a set Kerd by

Kerd = {x ∈ X | d(x) = 0}.

Proposition 3.15. Let X be a subtraction algebra and let D be a
symmetric bi-multiplier of X with the trace d. If y ∈ Kerd and x ∈ X,
then x ∧ y ∈ Kerd.

Proof. Let y ∈ Kerd. Then d(y) = 0.

d(x ∧ y) = D(x ∧ y, x ∧ y) = D(x, x ∧ y) ∧ y
= D(x ∧ y, y) ∧ y = D(y ∧ x, y) ∧ y
= (D(y, y) ∧ x) ∧ y = (0 ∧ x) ∧ y
= 0

for all x ∈ X. This implies x ∧ y ∈ Kerd.

Proposition 3.16. Let X be a subtraction algebra and let D be a
symmetric bi-multiplier of X with the trace d. Then Kerd is a down
closed set, that is, x ∈ Kerd and y ≤ x implies y ∈ Kerd.
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Proof. Let x ∈ Kerd and y ≤ x. Then d(x) = 0 and y−x = 0. Hence

d(y) = D(y, y) = D(x ∧ y, x ∧ y)
= D(x, x ∧ y) ∧ y = (D(x, x) ∧ y) ∧ y
= (d(x) ∧ y) ∧ y = (0 ∧ y) ∧ y = 0.

This implies that y ∈ Kerd.
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