ON SYMMETRIC BI-MULTIPLIERS OF SUBTRACTION ALGEBRAS

Kyung Ho Kim*

Abstract

In this paper, we introduce the notion of symmetric bi-multiplier of subtraction algebra and investigate some related properties. Also, we prove that if D is a symmetric bi-multiplier of X, then D is an isotone symmetric bi-multiplier of X.

1. Introduction

B. M. Schein ([4]) considered systems of the form $(\Phi ; \circ, \backslash)$, where Φ is a set of functions closed under the composition "०" of functions (and hence ($\Phi ; \circ$) is a function semigroup) and the set theoretic subtraction " \backslash " (and hence $(\Phi ; \backslash)$ is a subtraction algebra in the sense of ([1]). He proved that every subtraction semigroup is isomorphic to a difference semigroup of invertible functions. B. Zelinka ([6]) discussed a problem proposed by B. M. Schein concerning the structure of multiplication in a subtraction semigroup. He solved the problem for subtraction algebras of a special type, called the atomic subtraction algebras. In this paper, we introduce the notion of symmetric bi-multiplier of subtraction algebra and investigated some related properties. Also, we prove that if D is a symmetric bi-multiplier of X, then D is an isotone symmetric bimultiplier of X.

2. Preliminaries

By a subtraction algebra we mean an algebra ($X ;-$) with a single binary operation "-" that satisfies the following identities: for any $x, y, z \in X$,

Received January 08, 2018; Accepted April 25, 2018.
2010 Mathematics Subject Classification: Primary 16Y30, 03G25.
Key words and phrases: subtraction algebra, symmetric bi-multiplier, isotone, Fix ${ }_{a}(X)$, Kerd.

This was supported by Korea National University of Transportation in 2018.
(S1) $x-(y-x)=x$;
(S2) $x-(x-y)=y-(y-x)$;
(S3) $(x-y)-z=(x-z)-y$.
The last identity permits us to omit parentheses in expressions of the form $(x-y)-z$. The subtraction determines an order relation on X : $a \leq b \Leftrightarrow a-b=0$, where $0=a-a$ is an element that does not depend on the choice of $a \in X$. The ordered set $(X ; \leq)$ is a semi-Boolean algebra in the sense of [1], that is, it is a meet semilattice with zero 0 in which every interval $[0, a]$ is a Boolean algebra with respect to the induced order. Here $a \wedge b=a-(a-b)$; the complement of an element $b \in[0, a]$ is $a-b$; and if $b, c \in[0, a]$, then

$$
\begin{aligned}
b \vee c & =\left(b^{\prime} \wedge c^{\prime}\right)^{\prime}=a-((a-b) \wedge(a-c)) \\
& =a-((a-b)-((a-b)-(a-c)))
\end{aligned}
$$

In a subtraction algebra X, the following are true (see [4]):
(p1) $(x-y)-y=x-y$ for any $x, y \in X$.
(p2) $x-0=x$ and $0-x=0$ for any $x \in X$.
(p3) $(x-y)-x=0$ for any $x, y \in X$.
(p4) $x-(x-y) \leq y$ for any $x, y \in X$.
(p5) $(x-y)-(y-x)=x-y$ for any $x, y \in X$.
(p6) $x-(x-(x-y))=x-y$ for any $x, y \in X$.
(p7) $(x-y)-(z-y) \leq x-z$ for any $x, y, z \in X$.
(p8) $x \leq y$ for any $x, y \in X$ if and only if $x=y-w$ for some $w \in X$.
(p9) $x \leq y$ implies $x-z \leq y-z$ and $z-y \leq z-x$ for all $z \in X$.
(p10) $x, y \leq z$ implies $x-y=x \wedge(z-y)$ for any $x, y, z \in X$.
(p11) $(x \wedge y)-(x \wedge z) \leq x \wedge(y-z)$ for any $x, y, z \in X$.
(p12) $(x-y)-z=(x-z)-(y-z)$. for any $x, y, z \in X$.

A mapping d from a subtraction algebra X to a subtraction algebra Y is called a morphism if $d(x-y)=d(x)-d(y)$ for all $x, y \in X$. A self map d of a subtraction algebra X which is a morphism is called an endomorphism.

Lemma 2.1. Let X be a subtraction algebra. Then the following properties hold:
(1) $x \wedge y=y \wedge x$ for every $x, y \in X$.
(2) $x-y \leq x$ for all $x, y \in X$.

Lemma 2.2. Every subtraction algebra X satisfies the following property.

$$
(x-y)-(x-z) \leq z-y
$$

for all $x, y, z \in X$.

Definition 2.3. Let X be a subtraction algebra and Y a non-empty subset of X. Then Y is called a subalgebra if $x-y \in Y$ whenever $x, y \in Y$.

Definition 2.4. Let X be a subtraction algebra. A mapping D : $X \times X \rightarrow X$ is called symmetric if $D(x, y)=D(y, x)$ holds for all $x, y \in X$.

Definition 2.5. Let X be a subtraction algebra. A mapping $d(x)=$ $D(x, x)$ is called trace of $D(.,$.$) where D: X \times X \rightarrow X$ is a symmetric mapping.

3. Symmetric bi-multipliers of subtraction algebras

In what follows, let X denote a subtraction algebras unless otherwise specified.

Definition 3.1. Let X be a subtraction algebra and D be a symmetric map. A function $D: X \times X \rightarrow X$ is called a symmetric bi-multiplier on X if it satisfies the following condition

$$
D(x \wedge z, y)=D(x, y) \wedge z
$$

for all $x, y, z \in X$.

Example 3.2. Let $X=\{0, a, b, c\}$ be a set in which "-" is defined by

-	0	a	b	c
0	0	0	0	0
a	a	0	a	0
b	b	b	0	0
c	c	b	a	0

It is easy to check that $(X ;-)$ is a subtraction algebra. Define a map $D: X \times X \rightarrow X$ by

$$
D(x, y)= \begin{cases}0 & \text { if } x=0 \text { or } y=0 \\ a & \text { if }(x, y)=(a, a) \\ b & \text { if }(x, y)=(b, b) \\ c & \text { if }(x, y)=(c, c) \\ 0 & \text { if }(x, y)=(b, a),(a, b) \\ a & \text { if }(x, y)=(a, c),(c, a) \\ b & \text { if }(x, y)=(b, c),(c, b) .\end{cases}
$$

Then it is easily checked that D is a symmetric bi-multiplier of X.
Proposition 3.3. Let X be a subtraction algebra and let D be a symmetric bi-multiplier of X. Then $D(0, x)=0$ for all $x \in X$.

Proof. For all $x \in X$, we get

$$
\begin{aligned}
D(0, x) & =D(0 \wedge 0, x) \\
& =D(0, x) \wedge 0=0
\end{aligned}
$$

This completes the proof.
Proposition 3.4. Let X be a subtraction algebra and let D be a symmetric bi-multiplier of X with the trace d. Then $d(x) \leq x$ for all $x \in X$.

Proof. Since $x \wedge x=x$, we have

$$
\begin{aligned}
d(x) & =D(x, x) \\
& =D(x \wedge x, x)=D(x, x) \wedge x \\
& =d(x) \wedge x
\end{aligned}
$$

for all $x \in X$. Therefore $d(x) \leq x$ for all $x \in X$ by (S2) and (p4).
Proposition 3.5. Let X be a subtraction algebra and let D be a symmetric bi-multiplier of X. Then $D(x, y) \leq x$ and $D(x, y) \leq y$ for all $x, y \in X$.

Proof. Since $x \wedge x=x$, we have

$$
\begin{aligned}
D(x, y) & =D(x \wedge x, y) \\
& =D(x, y) \wedge x
\end{aligned}
$$

for all $x \in X$. Therefore $D(x, y) \leq x$ for all $x, y \in X$ by (S2) and (p4). Similarly, we see that $D(x, y) \leq y$ for all $x, y \in X$.

Theorem 3.6. Let X be a subtraction algebra and let D be a symmetric bi-multiplier of X with the trace d. Then d is an isotone mapping on X.

Proof. Let $x \leq y$. Then $x-y=0$. Hence we have

$$
\begin{aligned}
d(x) & =D(x, x)=D(x \wedge y, x \wedge y) \\
& =D(y \wedge x, x \wedge y)=D(y, x \wedge y) \wedge x \\
& =D(y \wedge x, y) \wedge x=(D(y, y) \wedge x) \wedge x \\
& \leq D(y, y) \wedge x \leq D(y, y)=d(y)
\end{aligned}
$$

This implies that d is an isotone mapping on X.

Let X be a subtraction algebra and let D be a symmetric bi-multiplier of X. For a fixed element $a \in X$, define a map $d_{a}: X \rightarrow X$ by $d_{a}(x)=$ $D(x, a)$ for all $x \in X$.

Proposition 3.7. Let X be a subtraction algebra and let D be a symmetric bi-multiplier of X. Then the following conditions hold:
(1) $d_{a}(x)=d_{a}(x) \wedge x$ for every $x \in X$.
(2) If $x \leq y$, then $d_{a}(x)=d_{a}(x) \wedge y$ for $x, y \in X$.

Proof. (1) For every $x \in X$, we have

$$
\begin{aligned}
d_{a}(x) & =D(x, a)=D(x \wedge x, a) \\
& =D(x, a) \wedge x=d_{a}(x) \wedge x
\end{aligned}
$$

(2) Let $x, y \in X$ be such that $x \leq y$. Then $x-y=0$. Hence

$$
\begin{aligned}
d_{a}(x) & =D(x, a)=D(x-(x-y), a) \\
& =D(x \wedge y, a)=D(x, a) \wedge y=d_{a}(x) \wedge y
\end{aligned}
$$

This completes the proof.
Proposition 3.8. Let X be a subtraction algebra and let D be a symmetric bi-multiplier of X. Then d_{a} is an isotone mapping on X.

Proof. Let $x, y \in X$ be such that $x \leq y$. Then $x-y=0$. Hence

$$
\begin{aligned}
d_{a}(x) & =D(x, a)=D(x-(x-y), a) \\
& =D(x \wedge y, a)=D(y \wedge x, a) \\
& =D(y, a) \wedge x \leq D(y, a)=d_{a}(y)
\end{aligned}
$$

This implies that d_{a} is an isotone mapping on X.
Proposition 3.9. Let X be a subtraction algebra and let D be a symmetric bi-multiplier of X. Then d_{a} is regular, that is, $d_{a}(0)=0$.

Proof. Let X be a subtraction algebra and let D be a symmetric bi-multiplier of X.

$$
\begin{aligned}
d_{a}(0) & =D(0, a)=D(0 \wedge 0, a) \\
& =D(0, a) \wedge 0=0
\end{aligned}
$$

This implies that d_{a} is regular.
Proposition 3.10. Let X be a subtraction algebra and let D be a symmetric bi-multiplier of X. Then $d_{a}(x \wedge y) \leq d_{a}(x)$ for all $x, y \in X$.

Proof. Let X be a subtraction algebra and let D be a symmetric bi-multiplier of X.

$$
\begin{aligned}
d_{a}(x \wedge y) & =D(x \wedge y, a)=D(x, a) \wedge y \\
& =d_{a}(x) \wedge y \leq d_{a}(x)
\end{aligned}
$$

This completes the proof.
Definition 3.11. Let X be a subtraction algebra and let D be a symmetric bi-multiplier of X. If $x \leq w$ implies $D(x, y) \leq D(w, y)$ for every $y \in X, D$ is called an isotone symmetric bi-multiplier of X.

Theorem 3.12. Let X be a subtraction algebra and let D be a symmetric bi-multiplier on X. Then D is an isotone symmetric bi-multiplier of X.

Proof. Let $x \leq y$. Then $x-y=0$. Hence we have

$$
\begin{aligned}
D(x, z) & =D(x-(x-y), z)=D(x \wedge y, z) \\
& =D(y \wedge x, z)=D(y, z) \wedge x \\
& \leq D(y, z)
\end{aligned}
$$

for all $z \in X$. This implies that D is an isotone symmetric bi-multiplier of X.

Let X be a subtraction algebra and let D be a symmetric bi-multiplier of X with the trace d. Define a set $F i x_{d}(X)$ by

$$
F i x_{d}(X)=\{x \in X \mid d(x)=x\} .
$$

Proposition 3.13. Let X be a subtraction algebra and let D be a symmetric bi-multiplier of X with the trace d. If $x \in F i x_{d}(X)$ and $y \in X$, then $x \wedge y \in$ Fix $_{d}(X)$.

Proof. Let $x \in F i x_{d}(X)$. Then $d(x)=x$. Hence

$$
\begin{aligned}
d(x \wedge y) & =D(x \wedge y, x \wedge y)=D(x, x \wedge y) \wedge y \\
& =D(x \wedge y, x) \wedge y=(D(x, x) \wedge y) \wedge y \\
& =(d(x) \wedge y) \wedge y=(x \wedge y) \wedge y \\
& =x \wedge y
\end{aligned}
$$

since $x \wedge y \leq y$ for all $x, y \in X$. This implies that $x \wedge y \in \operatorname{Fix}_{d}(X)$.
Proposition 3.14. Let X be a subtraction algebra and let D be a symmetric bi-multiplier of X with the trace d. Then $F i x_{d}(X)$ is a down closed set, that is, $y \in F i x_{d}(X)$ and $x \leq y$ implies $x \in F i x_{d}(X)$.

Proof. Let $y \in F i x_{d}(X)$ and $x \leq y$. Then $d(y)=y$. Hence

$$
\begin{aligned}
d(x) & =D(x, x)=D(x \wedge y, x \wedge y))=D(y \wedge x, y \wedge x) \\
& =D(y, y \wedge x) \wedge x=(D(y \wedge x, y) \wedge x \\
& =(D(y, y) \wedge x) \wedge x=(d(y) \wedge x) \wedge x=(y \wedge x) \wedge x \\
& =x
\end{aligned}
$$

This implies that $x \in F i x_{d}(X)$.

Let X be a subtraction algebra and let D be a symmetric bi-multiplier of X with the trace d. Define a set Kerd by

$$
\text { Kerd }=\{x \in X \mid d(x)=0\}
$$

Proposition 3.15. Let X be a subtraction algebra and let D be a symmetric bi-multiplier of X with the trace d. If $y \in \operatorname{Kerd}$ and $x \in X$, then $x \wedge y \in$ Kerd.

Proof. Let $y \in$ Kerd. Then $d(y)=0$.

$$
\begin{aligned}
d(x \wedge y) & =D(x \wedge y, x \wedge y)=D(x, x \wedge y) \wedge y \\
& =D(x \wedge y, y) \wedge y=D(y \wedge x, y) \wedge y \\
& =(D(y, y) \wedge x) \wedge y=(0 \wedge x) \wedge y \\
& =0
\end{aligned}
$$

for all $x \in X$. This implies $x \wedge y \in K e r d$.
Proposition 3.16. Let X be a subtraction algebra and let D be a symmetric bi-multiplier of X with the trace d. Then Kerd is a down closed set, that is, $x \in$ Kerd and $y \leq x$ implies $y \in$ Kerd.

Proof. Let $x \in \operatorname{Kerd}$ and $y \leq x$. Then $d(x)=0$ and $y-x=0$. Hence

$$
\begin{aligned}
d(y) & =D(y, y)=D(x \wedge y, x \wedge y) \\
& =D(x, x \wedge y) \wedge y=(D(x, x) \wedge y) \wedge y \\
& =(d(x) \wedge y) \wedge y=(0 \wedge y) \wedge y=0
\end{aligned}
$$

This implies that $y \in \operatorname{Kerd}$.

References

[1] J. C. Abbott, Sets, Lattices and Boolean Algebras, Allyn and Bacon, Boston, 1969.
[2] K. H. Kim, A note on f-derivations of subtraction algebras, Scientiae Mathematicae Japonicae, 72 (2010), no. 2, 127-132.
[3] S. D. Lee and K. H. Kim, A note on multipliers of subtraction algebras, The Hacettepe Journal of Mathematics and Statistics, 42 (2013), no. 2, 165-171.
[4] B. M. Schein, Difference Semigroups, Communications in Algebra, 20 (1992), 2153-2169.
[5] Y. H. Yon and K. H. Kim, On derivations of subtraction algebras, The Hacettepe Journal of Mathematics and statistics, 41 (2012), no. 2, 157-168
[6] B. Zelinka, Subtraction Semigroups, Mathematica Bohemica, 120 (1995), 445447.
*
Department of Mathematics
Korea National University of Transportation
Chungju 27469, Republic of Korea
E-mail: ghkim@ut.ac.kr

