유기 발광 다이오드의 광 추출 효율 개선을 위한 다양한 광학기능구조의 적용

  • 김양두 (고려대학교 신소재공학부) ;
  • 김관 (고려대학교 신소재공학부) ;
  • 허대홍 (고려대학교 신소재공학부) ;
  • 이헌 (고려대학교 신소재공학부)
  • Published : 2018.03.31

Abstract

Recent years, OLEDs have been progressed intensively and been widely applied to Display and Lighting industry,Almost 100% internal quantum efficiency was achieved by developing new materials and structure optimization. However, external quantum efficiency was still low due to total internal reflection of light inside OLED devices and absorption of light at the surface of metal electrode. In order to improve external quantum efficiency of OLED devices, various kinds of optical functional structures were introduced to inside and outside of OLED devices to increase light extraction efficiency. In this paper, various efforts to apply optical functional structures in OLED devices were reviewed and way to improve light extraction efficency of OLED devices were discussed.

Keywords

References

  1. M. Pope, H. P. Kallmann and P. Magnante, "Electroluminescence in organic crystals.", J. Chem. Phys., 38 [8] 2042-2043 (1963). https://doi.org/10.1063/1.1733929
  2. W. Helfrich and W. G. Schneider, "Recombination Radiation in Anthracene Crystals.", Phys. Rev. Lett., 14 [7] 229-231 (1965). https://doi.org/10.1103/PhysRevLett.14.229
  3. C. W. Tang and S. A. VanSlyke, "Organic electroluminescent diodes.", Appl. Phys. Lett., 51 [12] 913-915 (1987). https://doi.org/10.1063/1.98799
  4. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns and A. B. Holmes, "Light-emitting diodes based on conjugated polymers.", nature, 347 [6293] 539-541 (1990). https://doi.org/10.1038/347539a0
  5. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem and K. Leo, "White organic light-emitting diodes with fluorescent tube efficiency.", Nature, 459 [7244] 234-238 (2009). https://doi.org/10.1038/nature08003
  6. B. W. D'Andrade and S. R. Forrest, "White organic light-emitting devices for solid-state lighting.", Adv. Mater., 16 [18] 1585-1595 (2004). https://doi.org/10.1002/adma.200400684
  7. G. Schwartz, S. Reineke, T. C. Rosenow, K. Walzer and K. Leo, "Triplet harvesting in hybrid white organic Light-Emitting diodes.", Adv. Funct. Mater., 19 [9] 1319-1333 (2009). https://doi.org/10.1002/adfm.200801503
  8. OLED lighting Annual Report, UBI RESEARCH, (2015).
  9. M. C. Gather, A. Kohnen and K. Meerholz, "White organic light-emitting diodes." Adv. Mater., 23 [2] 233-248 (2011). https://doi.org/10.1002/adma.201002636
  10. Y.-S. Tyan, "Organic light-emitting-diode lighting overview.", J. Photon. Energy, 1 [1] 011009-011009 (2011). https://doi.org/10.1117/1.3529412
  11. L. Xiao, Z. Chen, B. Qu, J. Luo, S. Kong, Q. Gong and J. Kido, "Recent progresses on materials for electrophosphorescent organic light-emitting devices.", Adv. Mater., 23 [8] 926-952 (2011) https://doi.org/10.1002/adma.201003128
  12. M. Pfeiffer, S. R. Forrest, K. Leo and M. E. Thompson, "Electrophosphorescent pin organic light-emitting devices for very-high-efficiency flat-panel displays.", Adv. Mater., 14 [22] 1633-1636 (2002). https://doi.org/10.1002/1521-4095(20021118)14:22<1633::AID-ADMA1633>3.0.CO;2-#
  13. T. Tsutsui, E. Aminaka, C. P. Lin and D. U. Kim, "Extended molecular design concept of molecular materials for electroluminescence: sublimed-dye films, molecularly doped polymers and polymers with chromophores.", Philos. Trans. R. Soc. Lond. A, 355 [1725] 801-814 (1997). https://doi.org/10.1098/rsta.1997.0045
  14. C. Adachi, M. A. Baldo, M. E. Thompson and S. R. Forrest, "Nearly 100% internal phosphorescence efficiency in an organic light-emitting device.", J. Appl. Phys., 90 [10] 5048-5051 (2001). https://doi.org/10.1063/1.1409582
  15. K. Saxena, V. K. Jain and D. Singh Mehtam, "A review on the light extraction techniques in organic electroluminescent devices." Opt. Mater., 32 [1] 221-233 (2009). https://doi.org/10.1016/j.optmat.2009.07.014
  16. K. Meerholz and D. C. Muller, "Outsmarting Waveguide Losses in Thin-Film Light-Emitting Diodes.", Adv. Funct. Mater., 11 [4] 251-253 (2001). https://doi.org/10.1002/1616-3028(200108)11:4<251::AID-ADFM251>3.0.CO;2-Y
  17. S. Hofmann, M. Thomschke, P. Freitag, M. Furno, B. Lussem and K. Leo, "Top-emitting organic light-emitting diodes: Influence of cavity design.", Appl. Phys. Lett., 97 [25) 253308 (2010). https://doi.org/10.1063/1.3530447
  18. L. H. Smith and W. L. Barnes, "Using a low-index host layer to increase emission from organic light-emitting diode structures.", Org. Electron., 7 [6] 490-494 (2006). https://doi.org/10.1016/j.orgel.2006.07.001
  19. T. Nakamura, N. Tsutsumi, N. Juni and H. Fujii, "Thin-film waveguiding mode light extraction in organic electroluminescent device using high refractive index substrate.", J. Appl. Phys., 97 [5] 054505 (2005). https://doi.org/10.1063/1.1858875
  20. G. Gaertner and H. Greiner, "Light extraction from OLEDs with (high) index matched glass substrates.", Proc. SPIE, 6999 [1] 69992T-11 (2008).
  21. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lusem and K. Leo, "White organic light-emitting diodes with fluorescent tube efficiency.", Nature, 459 [7244] 234-238 (2009). https://doi.org/10.1038/nature08003
  22. S. Mladenovski, K. Neyts, D. Pavicic, A. Werner and C. Rothe, "Exceptionally efficient organic light emitting devices using high refractive index substrates.", Opt. Express, 17 [9] 7562-7570 (2009). https://doi.org/10.1364/OE.17.007562
  23. Y. H. Sung, K.-H. Han, Y. D. Kim, Y. Han, J. J. Kim and H. Lee, "Air void optical scattering structure for high-brightness organic light emitting diodes.", Ceram. Int., 43 [1] S455-S459 (2017). https://doi.org/10.1016/j.ceramint.2017.05.187
  24. Y. H. Sung, P.-H. Jung, K.-H. Han, Y. D. Kim, J. J. Kim and H. Lee, "Improved out-coupling efficiency of organic light emitting diodes fabricated on a $TiO_2$ planarization layer with embedded Si oxide nanostructures", Opt. Mater. 72 828-832 (2017). https://doi.org/10.1016/j.optmat.2017.04.003
  25. J.-B. Kim, J.-H. Lee, C.-K. Moon, S.-Y. Kim and J.-J. Kim, "Highly Enhanced Light Extraction from Surface Plasmonic Loss Minimized Organic Light-Emitting Diodes.", Adv. Mater., 25 [26] 3571-3577 (2013). https://doi.org/10.1002/adma.201205233
  26. Y. S. Park, S. Lee, K. H. Kim, S. Y. Kim, J. H. Lee and J. J. Kim, "Exciplex-Forming Co-host for Organic Light-Emitting Diodes with Ultimate Efficiency.", Adv. Funct. Mater. 23 [39] 4914-4920 (2013). https://doi.org/10.1002/adfm.201300547
  27. M. H. Lu and J. C. Sturm, "Optimization of external coupling and light emission in organic light-emitting devices: modeling and experiment.", J. Appl. Phys. 91 [2] 595-604 (2002). https://doi.org/10.1063/1.1425448
  28. Y. G. Bi, J. Feng, Y. F. Li, X. L. Zhang, Y. F. Liu, Y. Jin and H. B. Sun, "Broadband Light Extraction from White Organic Light-Emitting Devices by Employing Corrugated Metallic Electrodes with Dual Periodicity.", Adv. Mater. 25 [48] 6969-6974 (2013). https://doi.org/10.1002/adma.201302367
  29. C. S. Choi, S. M. Lee, M. S. Lim, K. C. Choi, D. Kim, D. Y. Jeon and O. O. Park, "Improved light extraction efficiency in organic light emitting diodes with a perforated WO3 hole injection layer fabricated by use of colloidal lithography." Opt. Express. 20 [102] A309-A317 (2012). https://doi.org/10.1364/OE.20.00A309
  30. K.-S. Han, J.-H. Shin, W.-Y. Yoon and H. Lee, "Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lithography", Sol. Energy Mater. Sol. Cells, 95 [1] 288-291 (2011). https://doi.org/10.1016/j.solmat.2010.04.064
  31. K.-S. Han, H. Lee, D. Kim and H. Lee, "Fabrication of anti-reflection structure on protective layer of solar cells by hot-embossing method", Sol. Energy Mater. Sol. Cells, 93 [8] 1214-1217 (2009). https://doi.org/10.1016/j.solmat.2009.01.002
  32. H. Lee and G.-Y. Jung, "Full wafer scale near zero residual nano-imprinting lithography using UV curable monomer solution", Microelectron. Eng., 77 [1] 42-47 (2005). https://doi.org/10.1016/j.mee.2004.08.008
  33. H. Lee, S. Hong, K. Yang and K. Choi, "Fabrication of nano-sized resist patterns on flexible plastic film using thermal curing nano-imprint lithography", Microelectron. Eng. 83 [2] 323-327 (2006). https://doi.org/10.1016/j.mee.2005.09.006
  34. H. Lee and G.-Y. Jung, "Wafer to wafer nano-imprinting lithography with monomer based thermally curable resin", Microelectron. Eng. 77 [2] 168-174 (2005). https://doi.org/10.1016/j.mee.2004.10.004
  35. H. Lee, S. Hong and K. Yang, “Fabrication of 100 nm metal lines on flexible plastic substrate using ultraviolet curing nanoimprint lithography”, Appl. Phys. Lett. 88 [14] 143112 (2006). https://doi.org/10.1063/1.2193653
  36. Y. F. Liu, J. Feng, D. Yin, H. F. Cui, X. L. Zhang, Y. G. Bi, D. -D. Zhang, L. -S. Liu, A. -W. Li, J. -F. Song, Q. -D. Chen, and H. -B. Sun, “Viewing-angle independence of white emission from microcavity top-emitting organic light-emitting devices with periodically and gradually changed cavity length”, Org. Electron., 14 [6] 1597-1601 (2013). https://doi.org/10.1016/j.orgel.2013.03.030
  37. M. Fujita, T. Ueno, K. Ishihara, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada and N. Shimoji, “Reduction of operating voltage in organic lightemitting diode by corrugated photonic crystal structure”, Appl. Phys. Lett., 85 [23] 5769-5771 (2004). https://doi.org/10.1063/1.1836867
  38. T. Nakamura, H. Fujii, N. Juni and N. Tsutusmi, “Enhanced Coupling of Light from Organic Electroluminescent Device Using Diffusive Particle Dispersed High Refractive Index Resin Substrate”, Opt. Rev., 13 [2] 104-110 (2006). https://doi.org/10.1007/s10043-006-0104-8
  39. Y. Sun and S. R. Forrest, “Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids”, Nat. Photonics., 2 [8] 283-487 (2008).
  40. K. -Y. Yang, K. -M, Yoon, K. -W. Choi, and H. Lee, “The direct nano-patterning of ZnO using nanoimprint lithography with ZnO-sol and thermal annealing”, Micro. Eng., 86 2228-2231 (2009). https://doi.org/10.1016/j.mee.2009.03.078
  41. K. S. Han, J. -H. Shin, and H. Lee, “Enhanced transmittance of glass plates for solar cells using nano-imprint lithography”, Sol. Energy Mater. Sol. Cells, 94 [3] 583-587 (2010). https://doi.org/10.1016/j.solmat.2009.12.001
  42. H. Lee, and G. -Y. Jung, “UV curing nanoimprint lithography for uniform layers and minimized residual layers”, Jpn. J. Appl. Phys., 43 8369-8372 (2004). https://doi.org/10.1143/JJAP.43.8369
  43. J. -W. Kim, K. -Y. Yang, S. -H. Hong, and H. Lee, “Formation of Au nano-patterns on various substrates using simplified nano-transfer printing method”, App. Sur. Sci., 254 [17] 5607-5611 (2008). https://doi.org/10.1016/j.apsusc.2008.03.046
  44. S. -H. Hong, B. -J. Bae, K. -S. Han, E. -J. Hong, and H. Lee, “Imprinted moth-eye antireflection patterns on glass substrate”, Elec. Mat. Lett., 5 [1] 39-42 (2009). https://doi.org/10.3365/eml.2009.03.039
  45. H. Park, K. J. Byeon, K. -Y. Yang, J. -Y. Cho, and H. Lee, “The fabrication of a patterned ZnO nanorod array for high brightness LEDs”, Nanotech., 21 [35] 355304 (2010). https://doi.org/10.1088/0957-4484/21/35/355304
  46. J. Frischeisen, Q. Niu, A. Abdellah, J. B. Kinzel, R. Gehlhaar, G. Scarpa, C. Adachi, P. Lugli and W. Brutting, “Light extraction from surface plasmons and waveguide modes in an organic light-emitting layer by nanoimprinted gratings”, Opt. Express., 19 [S1] A7-A19 (2011). https://doi.org/10.1364/OE.19.0000A7
  47. W. H. Koo, S. M. Jeong, S. Nishimura, F. Araoka, K. Ishikawa, T. Toyooka and H. Takezoe, “Polarization Conversion in Surface-Plasmon-Coupled Emission from Organic Light-Emitting Diodes Using Spontaneously Formed Buckles”, Adv. Mater., 23 [8] 1003-1007 (2011). https://doi.org/10.1002/adma.201003357
  48. W. H. Koo, W. Youn, P. Zhu, X. -H. Li, N. Tansu, F. So, “Light Extraction of Organic Light Emitting Diodes by Defective Hexagonal-Close-Packed Array”, Adv. Func. Mater., 22 3454-3459 (2012). https://doi.org/10.1002/adfm.201200876
  49. A. O. Altun, S. Jeon, J. Shim, J. -H. Jeong, D. -G. Choi, K. -D. Kim, J. -H. Choi, S. -W. Lee, E. -S. Lee, H. -D. Park, J. R. Youn, J. -J. Kim, Y. -H. Lee, J. -W. Kang, “Corrugated organic light emitting diodes for enhanced light extraction”, Org. Electron., 11 [5] 711-716 (2010). https://doi.org/10.1016/j.orgel.2009.12.005
  50. J. Hauss, T. Bocksrocker, B. Riedel, U. Geyer, U. Lemmer, and M. Gerken, “Metallic Bragg-gratings for light management in organic light-emitting devices”, Appl. Phys. Lett., 99 103303 (2011). https://doi.org/10.1063/1.3631728
  51. K. Ishihara, M. Fujita, I. Matsubara, T. Asano, S. Noda, H. Ohata, A. Hirasawa, H. Nakada, and N. Shimoji, “Organic light-emitting diodes with photonic crystals on glass substrate fabricated by nanoimprint lithography”, Appl. Phys. Lett., 90 111114 (2007). https://doi.org/10.1063/1.2713237
  52. S. Lee, J.-H. Lee, J.-H. Lee, and J.-J. Kim, "The Mechanism of Charge Generation in Charge-Generation Units Composed of p-Doped Hole-Transporting Layer/HATCN/n-Doped Electron-Transporting Layers", Adv. Funct. Mater., 22 [4] 855-860 (2012). https://doi.org/10.1002/adfm.201102212
  53. M. Fujita, T. Ueno, K. Ishihara, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Organic light-emitting diodes with photonic crystals on glass substrate fabricated by nanoimprint lithography”, Appl. Phys. Lett., 85 [23] 111114 (2004).
  54. Y. -G. Bi, J. Feng, Y. -F. Li, X. -L. Zhang, Y. -F. Liu, Y. Jin, and H. -B. Sun, "Broadband Light Extraction from White Organic Light-Emitting Devices by Employing Corrugated Metallic Electrodes with Dual Periodicity", Adv. Mater., 25 6969-6974 (2013). https://doi.org/10.1002/adma.201302367
  55. W. H. Koo, W. Youn, P. Zhu, X. -H. Li, N. Tansu, and F. So, "Light Extraction of Organic Light Emitting Diodes by Defective Hexagonal-Close-Packed Array", Adv. Funct. Mater., 22 3454-3459 (2012). https://doi.org/10.1002/adfm.201200876
  56. Y. Jiang, S. Chen, G. Li, H. Li, and H.-S. Kwok, Adv. Optical Mater., 2, 5, 418-422 (2014) https://doi.org/10.1002/adom.201400012
  57. Y. D. Kim, K. -H. Han, S. -J. Park, J. -B. Kim, J. -H. Shin, J. J. Kim, and H. Lee, "Enhanced light extraction efficiency in organic light emitting diodes using a tetragonal photonic crystal with hydrogen silsesquioxane", Opt. Lett., 39 [20] 5901-5904 (2014). https://doi.org/10.1364/OL.39.005901
  58. Sohee Jeon, Jun-ho Jeong, Young Seok Song, Won-Ik Jeong, Jang-Joo Kim and Jae Ryoun Youn, “Vacuum nano-hole array embedded organic light emitting diodes”, Nanoscale, 6 [46] 2642-2648 (2014). https://doi.org/10.1039/C3NR05331H
  59. Q. -D. Ou, L. Zhou, Y. -Q. Li, S. Shen, J. -D. Chen, C. Li, Q. -K. Wang, S. -T. Lee, and J. -X. Tang, “Extremely Efficient White Organic Light-Emitting Diodes for General Lighting”, Adv. Funct. Mater., 24 [46] 7249-7256 (2014). https://doi.org/10.1002/adfm.201402026
  60. H. -J. Choi, S. Choo, P. -H. Jong, J. -H. Shin, Y. -D. Kim, and H. Lee, “Uniformly embedded silver nanomesh as high bendable transparent conducting electrode”, Nanotech., 26 [5] 055305-055312 (2015). https://doi.org/10.1088/0957-4484/26/5/055305
  61. P. -H. Jung, Y. D. Kim, H. -J. Choi, Y. H. Sung, and H. Lee, "A transparent embedded Cu/Au-nanomesh electrode on flexible polymer film substrates", RSC Adv., 6 92970-92974 (2016). https://doi.org/10.1039/C6RA12054G