DOI QR코드

DOI QR Code

A study of thermolysis of irradiated diamide-containing extraction systems with nitric acid

  • Srvortsov, I.V. (Frumkin Institute of Physical Chemistry and Electrochemistry RAS) ;
  • Belova, E.V. (Frumkin Institute of Physical Chemistry and Electrochemistry RAS) ;
  • Sokolov, I.P. (Scientific and Engineering Centre for Nuclear and Radiation Safety) ;
  • Rodin, A.V. (Frumkin Institute of Physical Chemistry and Electrochemistry RAS) ;
  • Stefanovsky, S.V. (Frumkin Institute of Physical Chemistry and Electrochemistry RAS) ;
  • Mysoedov, B.F. (Frumkin Institute of Physical Chemistry and Electrochemistry RAS)
  • Received : 2018.05.07
  • Accepted : 2018.07.19
  • Published : 2018.12.25

Abstract

The dynamics of gas release at thermal oxidation of extraction systems on the basis of diamides of dicarbonic acids in fluorinated sulphones with 14 mol/L $HNO_3$ was investigated. The effect of preirradiation of the mixtures with accelerated electrons on the kinetics of their thermolysis was determined. The mixtures were heated in an autoclave at temperatures of 170 and $200^{\circ}C$ and irradiated using an electron accelerator to absorbed doses of 0.1, 0.5, and 1.0 MGy. It has been shown that no conditions for autocatalytic oxidation at thermolysis of extraction mixtures irradiated up to a dose of 1 MGy were developed.

Keywords

References

  1. M.L. Hyder, Safe Conditions for Contacting Nitric Acid or Nitrates with Tri-nbutil-phosphate (TBP), Savannah River Company, 1994. WSRC-TR-94-9059.
  2. Z. Nowak, M. Nowak, Thermal degradation of TBP-diluent system, Radiochem. Radioanal. Lett. 38 (1979) 377-386.
  3. R. Robinson, D. Gutowski, W. Yeniscavich, Control of Red Oil Explosions in Defense Nuclear Facilities, Technical Report, Defense Nuclear Facilities Safety Board, USA, 2003.
  4. V.N. Usachev, G.S. Markov, Accidents at experimental and industrial facilities due to formation, collection, and decomposition of "red oil", Radiochemistry 45 (2003) 1-8. https://doi.org/10.1023/A:1022353014980
  5. V.N. Romanovskiy, I.V. Smirnov, V.A. Babain, T.A. Todd, R.S. Herbst, J.D. Law, K.N. Brewer, The universal solvent extraction (UNEX) process. I. Development of the UNEX process solvent for the separation of cesium, strontium, and the actinides from acidic radioactive waste, Solvent Extr. Ion Exch. 19 (2001) 1-21. https://doi.org/10.1081/SEI-100001370
  6. P.K. Sinha, S. Kumar, U. Kamachi Mudali, R. Natarajan, Thermal stability of UNEX/HCCD-PEG diluent FS-13, J. Radioanal. Nucl. Chem. 289 (2011) 899-901. https://doi.org/10.1007/s10967-011-1179-7
  7. RB-060-10 Statement on Evaluation of Fire- and Explosion Safety of Technological Processes of Radiochemical Facilities, State Technical Supervision, Moscow, 2010 (Russ.).
  8. J. Hallerod, C. Ekberg, M. Foreman, E.L. Engdahl, E. Aneheim, Stability of phenyl trifluoromethyl sulfone as diluent in a grouped actinide extraction process, J. Radioanal. Nucl. Chem. 304 (2015) 287-291. https://doi.org/10.1007/s10967-014-3657-1
  9. S. Kumar, M. Muthukumar, P.K. Sinha, U. Kamachi Mudali, R. Natarajan, PVT properties of UNEX/HCCD-PEG diluent phenyl trifluoromethyl sulfone (FS-13) and experimental measurement of vapour pressure in 283.15-363.15 K range, J. Radioanal. Nucl. Chem. 289 (2011) 247-249. https://doi.org/10.1007/s10967-011-1070-6
  10. V.N. Romanovsky, Extraction Technology for Recovery of Long-lived Radionuclides from Liquid High Level Waste Using Individual Phosphorus-organic Compounds and Their Synergetic Salts, 2001. Ph. D. Thesis (Russ.), St-Petersburg.
  11. B.J. Mincher, R.S. Herbst, R.D. Tillotson, S.P. Mezyk, $\gamma$-Radiation effects on the performance of HCCD-PEG for Cs and Sr extraction, Solvent Extr. Ion Exch. 25 (2007) 747-755. https://doi.org/10.1080/07366290701634438
  12. A. Paulenova, M.Y. Alyapyshev, V.A. Babain, R.S. Herbst, J.D. Law, Extraction of lanthanides with diamides of dipicolinic acid from nitric acid solutions. I, Separ. Sci. Technol. 43 (2008) 2606-2618. https://doi.org/10.1080/01496390802121636
  13. A. Paulenova, M.Y. Alyapyshev, V.A. Babain, R.S. Herbst, J.D. Law, Extraction of lanthanoids with diamides of dipcolinic acid from nitric acid solutions. II. Synergistic effect of ethyl-tolyl derivates and dicarbollide cobalt, Solvent Extr. Ion Exch. 31 (2013) 184-197. https://doi.org/10.1080/07366299.2012.735528
  14. M. Alyapyshev, V. Babain, N. Borisova, I. Eliseev, D. Kirsanov, A. Kostin, A. Legin, M. Reshetova, Z. Smirnova, 2,20-Dipyridyl-6,60-dicarboxylic acid diamides: synthesis, complexation and extraction properties, Polyhedron 29 (2010) 1998-2005. https://doi.org/10.1016/j.poly.2010.03.021
  15. M.Y. Alyapyshev, V.A. Babain, L.I. Tkachenko, A. Paulenova, A.A. Popova, N.E. Borisova, New diamides of 2,2'-dipyridyl-6,6'-dicarboxylic acid for actinide-lanthanide separation, Solvent Extr. Ion Exch. 32 (2014) 138-152. https://doi.org/10.1080/07366299.2013.833783
  16. M.Y. Alyapyshev, V.A. Babain, N.E. Borisova, R.N. Kiseleva, D.V. Safronov, M.D. Reshetova, New systems based on 2,2'-dipyridyl-6,6'-dicarboxylic acid diamides for Am-Eu separation, Mendeleev Commun. 18 (2008) 336-337. https://doi.org/10.1016/j.mencom.2008.11.018
  17. A.V. Rodin, E.R. Nazin, G.M. Zachinyaev, E.V. Belova, G.P. Tkhorznitsky, D.I. Danilin, I.G. Tananaev, Radiation-thermal interaction of ТBP with nitric acid under atmospheric pressure, Probl. Radiat. Saf. (2011) 45-50 (Russ.) [3].
  18. E.R. Nazin, G.M. Zachinyaev, Fire- and Explosion Safety of Technological Processes in Radiochemical Industry, STC NRF, Moscow, 2009 (Russ.).
  19. E.R. Nazin, G.M. Zachinyaev, A.V. Rodin, E.V. Belova, G.P. Thorzhnitsky, B.F. Myasoedov, Gamma radiation thermal stability of two-phase mixtures of nitric acid with degraded TBP in a closed vessel, Nucl. Technol. 194 (3) (2016) 369-378. https://doi.org/10.13182/NT15-77

Cited by

  1. Thermochemical Stability of Extraction Systems for SNF Processing vol.62, pp.6, 2020, https://doi.org/10.1134/s1066362220060053