DOI QR코드

DOI QR Code

ROSA/LSTF test and RELAP5 code analyses on PWR 1% vessel upper head small-break LOCA with accident management measure based on core exit temperature

  • 투고 : 2018.03.01
  • 심사 : 2018.08.06
  • 발행 : 2018.12.25

초록

An experiment was performed using the large-scale test facility (LSTF), which simulated a 1% vessel upper head small-break loss-of-coolant accident with an accident management (AM) measure under an assumption of total-failure of high-pressure injection (HPI) system in a pressurized water reactor (PWR). In the LSTF test, liquid level in the upper head affected break flow rate. Coolant was manually injected from the HPI system into cold legs as the AM measure when the maximum core exit temperature reached 623 K. The cladding surface temperature largely increased due to late and slow response of the core exit thermocouples. The AM measure was confirmed to be effective for the core cooling. The RELAP5/MOD3.3 code indicated insufficient prediction of primary coolant distribution. The author conducted uncertainty analysis for the LSTF test employing created phenomena identification and ranking table for each component. The author clarified that peak cladding temperature was largely dependent on the combination of multiple uncertain parameters within the defined uncertain ranges.

키워드

참고문헌

  1. Reactor USNRC, Pressure Vessel Head Degradation and Reactor Coolant Pressure Boundary Integrity, Bulletin 2002-01, OMB Control No.: 3150-0012, U.S. Nuclear Regulatory Commission, Washington, DC, 2002.
  2. H. Nakamura, T. Watanabe, T. Takeda, Y. Maruyama, M. Suzuki, Overview of recent efforts through ROSA/LSTF experiments, Nucl. Eng. Technol. 41 (2009) 753-764. https://doi.org/10.5516/NET.2009.41.6.753
  3. The ROSA-V Group, -V. ROSA, Large Scale Test Facility (LSTF) System Description for the Third and Fourth Simulated Fuel Assemblies, JAERI-tech 2003-037, Japan Atomic Energy Research Institute, Ibaraki, Japan, 2003.
  4. Y. Kukita, K. Tasaka, H. Asaka, T. Yonomoto, H. Nakamura, The effects of break locaion on PWR small break LOCA: experimental study at the ROSA-IV LSTF, Nucl. Eng. Des. 122 (1990) 255-262. https://doi.org/10.1016/0029-5493(90)90210-O
  5. J. Freixa, A. Manera, Analysis of an RPV upper head SBLOCA at the ROSA facility using TRACE, Nucl. Eng. Des. 240 (2010) 1779-1788. https://doi.org/10.1016/j.nucengdes.2010.02.007
  6. C. Queral, J. Gonzalez-cadelo, G. Jimenez, E. Villalba, Accident management actions in an upper-head small-break loss-of-coolant accident with highpressure safety injection failed, Nucl. Technol. 175 (2011) 572-593. https://doi.org/10.13182/NT11-A12507
  7. USNRC Nuclear Safety Analysis Division, RELAP5/MOD3.3 Code Manual, NUREG/CR-5535/Rev 1, Information Systems Laboratories, Inc., 2001.
  8. G.E. Wilson, B.E. Boyack, The role of the PIRT process in experiments, code development and code applications associated with reactor safety analysis, Nucl. Eng. Des. 186 (1998) 23-37. https://doi.org/10.1016/S0029-5493(98)00216-7
  9. N. Zuber, Problems in Modeling Small Break LOCA, USNRC Report NUREG-0724, U.S. Nuclear Regulatory Commission, Washington, DC, 1980.
  10. H. Kumamaru, K. Tasaka, in: Recalculation of Simulated Post-scram Core Power Decay Curve for Use in ROSA-IV/LSTF Experiments on PWR Small-break LOCAs and Transients, JAERI-M 90-142, Japan Atomic Energy Research Institute, Ibaraki, Japan, 1990.
  11. V.H. Ransom, J.A. Trapp, The RELAP5 choked flow model and application to a large scale flow test, in: Proceedings of the ANS/ASME/NRC International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Saratoga Springs, New York, USA, 1980.
  12. H. Asaka, Y. Kukita, T. Yonomoto, Y. Koizumi, K. Tasaka, Results of 0.5% coldleg small-break LOCA experiments at ROSA-IV/LSTF: effect of break orientation, Exp. Therm. Fluid Sci. 3 (1990) 588-596. https://doi.org/10.1016/0894-1777(90)90075-I
  13. H.K. Fauske, The discharge of saturated water through tubes, AlChE Symp. Ser. 61 (1965) 210-216.
  14. K.H. Ardron, R.A. Furness, A study of the critical flow models used in reactor blowdown analysis, Nucl. Eng. Des. 39 (1976) 257-266. https://doi.org/10.1016/0029-5493(76)90074-1
  15. D.W. Sallet, Thermal hydraulics of valves for nuclear applications, Nucl. Sci. Eng. 88 (1984) 220-244. https://doi.org/10.13182/NSE84-A18579
  16. B.E. Boyack, L.W. Ward, Validation test matrix for the consolidated TRAC (TRAC-M) code, in: Proceedings of International Meeting on Best Estimate Methods in Nuclear Installation Safety Analysis (BE '00), Los Alamos National Laboratory, NM, USA, Washington, DC, 2000.
  17. M.J. Griffiths, J.P. Schlegel, T. Hibiki, M. Ishii, I. Kinoshita, Y. Yoshida, Phenomena identification and ranking table for thermal-hydraulic phenomena during a small-break LOCA with loss of high pressure injection, Prog. Nucl. Energy 73 (2014) 51-63. https://doi.org/10.1016/j.pnucene.2014.01.008
  18. M. Ishii, K. Mishima, Study of Two-fluid Model and Interfacial Area, NUREG/CR-1873, Argonne National Laboratory, Lemont, IL, 1980.
  19. H. Kumamaru, Y. Kukita, H. Asaka, M. Wang, E. Ohtani, RELAP5/MOD3 code analyses of LSTF experiments on intentional primary-side depressurization following SBLOCAs with totally failed HPI, Nucl. Technol. 126 (1999) 331-339. https://doi.org/10.13182/NT99-A2978
  20. L.A. Bromley, Heat transfer in stable film boiling, Chem. Eng. Prog. 46 (1950) 221-227.
  21. K.H. Sun, J.M. Gonzalez-santalo, C.L. Tien, Calculations of combined radiation and convection heat transfer in rod bundles under emergency cooling conditions, J. Heat Tran. 98 (1976) 414-420. https://doi.org/10.1115/1.3450569
  22. F.W. Dittus, L.M.K. Boelter, Heat transfer in automobile radiators of the tubular type, Int. Commun. Heat Mass Tran. 12 (1985) 3-22. https://doi.org/10.1016/0735-1933(85)90003-X
  23. J.R. Sellars, M. Tribus, J.S. Klein, Heat transfer to laminar flows in a round tube or flat conduit: the Graetz problem extended, Transactions of the ASME 78 (1956) 441-448.
  24. S.W. Churchill, H.H.S. Chu, Correlating equations for laminar and turbulent free convection from a vertical plate, Int. J. Heat Mass Tran. 18 (1975) 1323-1329. https://doi.org/10.1016/0017-9310(75)90243-4
  25. A. Guba, M. Makai, L. Pal, Statistical aspects of best estimate methodeI, Reliab. Eng. Syst. Saf. 80 (2003) 217-232. https://doi.org/10.1016/S0951-8320(03)00022-X
  26. A. de Crecy, P. Bazin, H. Glaeser, et al., Uncertainty and sensitivity analysis of the LOFT L2-5 test: results of the BEMUSE programme, Nucl. Eng. Des. 238 (2008) 3561-3578. https://doi.org/10.1016/j.nucengdes.2008.06.004
  27. W.W. Daniel, Spearman rank correlation coefficient, in: Applied Nonparametric Statistics, second ed., PWS-Kent Publishing, Boston, MA, 1990.
  28. J. Freixa, T.W. Kim, A. Manera, Post-test thermal-hydraulic analysis of two intermediate LOCA tests at the ROSA facility including uncertainty evaluation, Nucl. Eng. Des. 264 (2013) 153-160. https://doi.org/10.1016/j.nucengdes.2013.02.023