DOI QR코드

DOI QR Code

Theoretical study of cross sections of proton-induced reactions on cobalt

  • Received : 2017.05.14
  • Accepted : 2018.01.09
  • Published : 2018.04.25

Abstract

Nuclear fusion may be among the strongest sustainable ways to replace fossil fuels because it does not contribute to acid rain or global warming. In this context, activated cobalt materials in corrosion products for fusion energy are significant in determination of dose levels during maintenance after a coolant leak in a nuclear fusion reactor. Therefore, cross-section studies on cobalt material are very important for fusion reactor design. In this article, the excitation functions of some nuclear reaction channels induced by proton particles on $^{59}Co$ structural material were predicted using different models. The nuclear level densities were calculated using different choices of available level density models in ALICE/ASH code. Finally, the newly calculated cross sections for the investigated nuclear reactions are compared with the experimental values and TENDL data based on TALYS nuclear code.

Keywords

References

  1. S.C. Cowley, The quest for fusion power, Nat. Phys. 12 (2016) 384. https://doi.org/10.1038/nphys3719
  2. M. Yigit, A. Kara, Nucl. Eng. Tech. 49 (2017) 996-1005. https://doi.org/10.1016/j.net.2017.03.006
  3. B. Demir, A. Kaplan, V. Capali, J. Fusion Energy 34 (2015) 636. https://doi.org/10.1007/s10894-015-9860-4
  4. M. Yigit, Appl. Radiat. Isot. 105 (2015) 15-19. https://doi.org/10.1016/j.apradiso.2015.07.016
  5. Z.D. Wu, H.Y. Liang, Y.L. Han, Nucl. Sci. Tech. 27 (2016) 102. https://doi.org/10.1007/s41365-016-0092-8
  6. M. Yigit, E. Tel, I.H. Sarpun, Nucl. Instrum. Meth. Phys. Res. B 385 (2016) 59-64. https://doi.org/10.1016/j.nimb.2016.08.019
  7. M. Yigit, E. Tel, Ann. Nucl. Energy 69 (2014) 44-50. https://doi.org/10.1016/j.anucene.2014.01.036
  8. M. Yigit, E. Tel, Nucl. Eng. Design 293 (2015) 97-104. https://doi.org/10.1016/j.nucengdes.2015.07.043
  9. M. Yigit, E. Tel, J. Radioanal. Nucl. Chem. 306 (2015) 203-211. https://doi.org/10.1007/s10967-015-4070-0
  10. E. Simeckova, P. Bem, M. Honusek, et al., Phys. Rev. C 84 (014605) (2011).
  11. R. A. Forrest, Development of Activation Data Libraries for Fusion, http://kinr.kiev.ua/NPAE_Kyiv2008/.../Forrest_6-6.pdf.
  12. C.H.M. Broeders, A.Yu Konobeyev, Yu A. Korovin, et al., ALICE/ASH manual, FZK 7183, May 2006. http://bibliothek.fzk.de/zb/berichte/FZKA7183.pdf.
  13. V.F. Weisskopf, D.H. Ewing, Phys. Rev. 57 (1940) 472. https://doi.org/10.1103/PhysRev.57.472
  14. M. Blann, H.K. Vonach, Phys. Rev. C 28 (1983) 1475-1492.
  15. M. Korkmaz, M. Yigit, O. Agar, Acta Physica Polonica A 132 (2017) 670-673. https://doi.org/10.12693/APhysPolA.132.670
  16. M. Yigit, Appl. Radi. Isot. 130 (2017) 109-114. https://doi.org/10.1016/j.apradiso.2017.09.027
  17. A.V. Ignatyuk, G.M. Smirenkin, A. Tishin, Sov. J. Nucl. Phys. 21 (1975) 255.
  18. A.V. Ignatyuk, K.K. Istekov, G. Smirenkin, Yadernaja Fizika 29 (1979) 875.
  19. S.K. Kataria, V.S. Ramamurthy, M. Blann, T.T. Komoto, Nucl. Instrum. Methods Phys. Res. Sect. A 288 (1990) 585-588. https://doi.org/10.1016/0168-9002(90)90155-Y
  20. Experimental Nuclear Reaction Data, EXFOR Data Files, 2015. http://www.nndc.bnl.gov/exfor/exfor.htm.
  21. A.J. Koning, D. Rochman, S. van der Marck, et al., TENDL Database: TALYSbased Evaluated Nuclear Data Library, https://tendl.web.psi.ch/tendl_2015/tendl2015.html.
  22. B. Canbula, Nucl. Instrum. Methods in Phys. Res. B 391 (2017) 73. https://doi.org/10.1016/j.nimb.2016.11.006
  23. S. Kailas, S.K. Gupta, M.K. Mehta, et al., Phys. Rev. C 12 (1975) 1789. https://doi.org/10.1103/PhysRevC.12.1789
  24. C.H. Johnson, C.C. Trail, A. Galonsky, Phys. Rev. 136 (1964) B1719. https://doi.org/10.1103/PhysRev.136.B1719
  25. R.D. Albert, Phys. Rev. 115 (1959) 925. https://doi.org/10.1103/PhysRev.115.925
  26. L.F. Hansen, R.D. Albert, Phy. Rev. 128 (1962) 291. https://doi.org/10.1103/PhysRev.128.291
  27. G. Chodil, R.C. Jopson, H. Mark, et al., Nucl. Phys. A 93 (1967) 648. https://doi.org/10.1016/0375-9474(67)90312-0
  28. R.A. Sharp, R.M. Diamond, G. Wilkinson, Phys. Rev. 101 (1956) 1493. https://doi.org/10.1103/PhysRev.101.1493
  29. F. Ditroi, F. Tarkanyi, S. Takacs, et al., J. Radioanal. Nucl. Chem. 298 (2013) 853. https://doi.org/10.1007/s10967-013-2578-8
  30. P.C. Johnson, M.C. Lagunas-Solar, M.J. Avila, Appl. Radiat. Isot. 35 (1984) 371. https://doi.org/10.1016/0020-708X(84)90044-9
  31. R. Michel, M. Gloris, H.J. Lange, et al., Nucl. Phys. A 322 (1979) 40. https://doi.org/10.1016/0375-9474(79)90332-4
  32. F.J. Haasbroek, J. Steyn, R.D. Neirinckx, et al., Council f.Scient. Indust. Res. Pretoria 28 (1976) 533. Repts. No.89.

Cited by

  1. Modeling and experimental production yield of 64Cu with natCu and natCu-NPs in Tehran Research Reactor vol.51, pp.1, 2018, https://doi.org/10.1016/j.net.2018.08.008
  2. Theoretical cross-sectional calculation of some structural fusion material on (n, α)-induced reactions vol.93, pp.7, 2018, https://doi.org/10.1007/s12648-018-1349-3
  3. S-Factor Analysis of Proton Capture Reactions on 112,114,116,119Sn and 113,115In Isotopes vol.82, pp.4, 2018, https://doi.org/10.1134/s106377881904015x
  4. Study on (n,p) reactions of 58,60,61,62,64Ni using new developed empirical formulas vol.52, pp.4, 2020, https://doi.org/10.1016/j.net.2019.10.009
  5. A new empirical formula for cross-sections of (n,n $ \alpha $ ) reactions vol.29, pp.8, 2020, https://doi.org/10.1142/s0218301320500627
  6. A study on the estimations of ( n , t ) reaction cross-sections at 14.5 MeV by using artificial neural network vol.36, pp.23, 2021, https://doi.org/10.1142/s0217732321501686