DOI QR코드

DOI QR Code

A frame work for heat generation/absorption and modified homogeneous-heterogeneous reaction in flow based on non-Darcy-Forchheimer medium

  • Hayat, Tasawar (Department of Mathematics, Quaid-I-Azam University) ;
  • Ahmad, Salman (Department of Mathematics, Quaid-I-Azam University) ;
  • Khan, Muhammad I. (Department of Mathematics, Quaid-I-Azam University) ;
  • Khan, Muhammad I. (Heriot Watt University, Edinburgh Campus, Edinburgh EH14 4AS, Faculty of Engineering) ;
  • Alsaedi, Ahmed (NAAM Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University)
  • Received : 2017.06.07
  • Accepted : 2018.01.08
  • Published : 2018.04.25

Abstract

The present work aims to report the consequences of Darcy-Forchheimer medium in flow of Cross fluid model toward a stretched surface. Flow in porous space is categorized by Darcy-Forchheimer medium. Further heat transfer characteristics are examined via thermal radiation and heat generation/absorption. Transformation procedure is used. The arising system of nonlinear ordinary differential equations is solved numerically by means of shooting method. The effects of different flow variables on velocity, temperature, concentration, skin friction, and heat transfer rate are discussed. The obtained outcomes show that velocity was enhanced with the increase in the Weissenberg number but decays with increase in the porosity parameter and Hartman number. Temperature field is boosted by thermal radiation and heat generation; however, it decays with the increase in the Prandtl number.

Keywords

References

  1. M.M. Cross, Rheology of non-Newtonian fluids: a new flow equation for pseudoplastic systems, J. Colloid Sci. 20 (1965) 417-437. https://doi.org/10.1016/0095-8522(65)90022-X
  2. T. Hayat, S. Ahmad, M.I. Khan, A. Alsaedi, Simulation of ferromagnetic nanomaterial flow of Maxwell fluid, Results Phys. 8 (2018) 34-40. https://doi.org/10.1016/j.rinp.2017.11.021
  3. M.J. Babu, N. Sandeep, UCM flow across a melting surface in the presence of double stratification and cross-diffusion effects, J. Mol. Liq. 232 (2017) 27-35. https://doi.org/10.1016/j.molliq.2017.02.063
  4. M.I. Khan, T. Hayat, M.I. Khan, A. Alsaedi, Activation energy impact in nonlinear radiative stagnation point flow of Cross fluid, Int. Commun. Heat Mass Transf. 91 (2018) 216-224. https://doi.org/10.1016/j.icheatmasstransfer.2017.11.001
  5. T. Hayat, S. Ahmad, M.I. Khan, A. Alsaedi, Exploring magnetic dipole contribution on radiative flow of ferromagnetic Williamson fluid, Results Phys. 8 (2018) 545-551. https://doi.org/10.1016/j.rinp.2017.11.040
  6. M.I. Khan, M. Waqas, T. Hayat, A. Alsaedi, Magneto-hydrodynamical numerical simulation of heat transfer in MHD stagnation point flow of Cross fluid model towards a stretched surface, Phys. Chem. Liq. (2017), https://doi.org/10.1080/00319104.2017.1367791.
  7. I.L. Animasaun, C.S.K. Raju, N. Sandeep, Unequal diffusivities case of homogeneous-heterogeneous reactions within viscoelastic fluid flow in the presence of induced magnetic-field and nonlinear thermal radiation, Alex. Eng. J. 55 (2016) 1595-1606. https://doi.org/10.1016/j.aej.2016.01.018
  8. S. Qayyum, M.I. Khan, T. Hayat, A. Alsaedi, A framework for nonlinear thermal radiation and homogeneous-heterogeneous reactions flow based on silverwater and copper-water nanoparticles: a numerical model for probable error, Results Phys. 7 (2017) 1907-1914. https://doi.org/10.1016/j.rinp.2017.05.020
  9. M.I. Khan, M. Waqas, T. Hayat, A. Alsaedi, M.I. Khan, Significance of nonlinear radiation in mixed convection flow of magneto Walter-B nanoliquid, Int. J. Hydrogen Energy 42 (2017) 26408-26416. https://doi.org/10.1016/j.ijhydene.2017.08.177
  10. R. Kumar, S. Sood, M. Sheikholeslami, S.A. Shehzad, Nonlinear thermal radiation and cubic autocatalysis chemical reaction effects on the flow of stretched nanofluid under rotational oscillations, J. Colloid Sci. 505 (2017) 253-265. https://doi.org/10.1016/j.jcis.2017.05.083
  11. M.I. Khan, M. Waqas, T. Hayat, M.I. Khan, A. Alsaedi, Numerical simulation of nonlinear thermal radiation and homogeneous-heterogeneous reactions in convective flow by a variable thicked surface, J. Mol. Liq. 246 (2017) 259-267. https://doi.org/10.1016/j.molliq.2017.09.075
  12. T. Hayat, M.I. Khan, M. Farooq, T. Yasmeen, A. Alsaedi, Stagnation point flow with Cattaneo-Christov heat flux and homogeneous-heterogeneous reactions, J. Mol. Liq. 220 (2016) 49-55. https://doi.org/10.1016/j.molliq.2016.04.032
  13. B.C. Prasannakumara, B.J. Gireesha, M.R. Krishnamurthy, K.G. Kumar, MHD flow and nonlinear radiative heat transfer of Sisko nanofluid over a nonlinear stretching sheet, Inform. Med. Unlocked 9 (2017) 123-132. https://doi.org/10.1016/j.imu.2017.07.006
  14. G.T. Thammanna, K.G. Kumar, B.J. Gireesha, G.K. Ramesh, B.C. Prasannakumara, Three dimensional MHD flow of couple stress Casson fluid past an unsteady stretching surface with chemical reaction, Results Phys. 7 (2017) 4104-4110. https://doi.org/10.1016/j.rinp.2017.10.016
  15. K.G. Kumar, B.J. Gireesha, B.C. Prasannakumara, G.K. Ramesh, O.D. Makinde, Phenomenon of radiation and viscous dissipation on Casson nanoliquid flow past a moving melting surface, Diffus. Found. 11 (2017) 33-42. https://doi.org/10.4028/www.scientific.net/DF.11.33
  16. K.G. Kumar, B.J. Gireesha, B.C. Prasannakumara, O.D. Makinde, Impact of chemical reaction on Marangoni boundary layer flow of a Casson nano liquid in the presence of uniform heat source sink, Diffus. Found. 11 (2017) 22-32. https://doi.org/10.4028/www.scientific.net/DF.11.22
  17. K.G. Kumar, B.J. Gireesha, M.R. Krishnamurthy, B.C. Prasannakumara, Impact of convective condition on Marangoni convection flow and heat transfer in Casson nanofluid with uniform heat source sink, J. Nanofluids 7 (1) (2017) 108-114.
  18. T. Hayat, M.I. Khan, M. Farooq, A. Alsaedi, M. Waqas, T. Yasmeen, Impact of Cattaneo-Christov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface, Int. J. Heat Mass Transf. 99 (2016) 702-710. https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.016
  19. M. Ramzan, J.D. Chung, N. Ullah, Radiative magnetohydrodynamic nanofluid flow due to gyrotactic microorganisms with chemical reaction and non-linear thermal radiation, Int. J. Mech. Sci. 130 (2017) 31-40. https://doi.org/10.1016/j.ijmecsci.2017.06.009
  20. O.D. Makinde, I.L. Animasaun, Thermophoresis and Brownian motion effects on MHD bioconvection of nanofluid with nonlinear thermal radiation and quartic chemical reaction past an upper horizontal surface of a paraboloid of revolution, J. Mol. Liq. 221 (2016) 733-743. https://doi.org/10.1016/j.molliq.2016.06.047
  21. P. Forchhiemer, Wasserbewewegung durch Boden, Z. Ver. D. Ing. 45 (1901) 1781.
  22. T. Hayat, S. Ahmad, M.I. Khan, A. Alsaedi, Non-Darcy Forchheimer flow of ferromagnetic second grade fluid, Results Phys. 7 (2017) 3419-3424. https://doi.org/10.1016/j.rinp.2017.08.041
  23. T. Hayat, Z. Hussain, B. Ahmed, A. Alsaedi, Base fluids with CNTs as nanoparticles through non-Darcy porous medium in convectively heated flow: a comparative study, Adv. Powder Tech. 28 (2017) 1855-1865. https://doi.org/10.1016/j.apt.2017.04.003
  24. T. Hayat, F. Shah, A. Alsaedi, M.I. Khan, Development of homogeneous/heterogeneous reaction in flow based through non-Darcy Forchheimer medium, J. Theor. Comput. Chem. 16 (2017), 1750045. https://doi.org/10.1142/S0219633617500456
  25. M.I. Khan, M. Waqas, T. Hayat, A. Alsaedi, A comparative study of Casson fluid with homogeneous-heterogeneous reactions, J. Colloid Sci. 498 (2017) 85-90. https://doi.org/10.1016/j.jcis.2017.03.024
  26. T. Hayat, S. Ullah, M.I. Khan, A. Alsaedi, On framing potential features of SWCNTs and MWCNTs in mixed convective flow, Results Phys. 8 (2018) 357-364. https://doi.org/10.1016/j.rinp.2017.12.017
  27. T. Hayat, M.I. Khan, M. Tamoor, M. Waqas, A. Alsaedi, Numerical simulation of heat transfer in MHD stagnation point flow of Cross fluid model towards a stretched surface, Res. Phys. 7 (2017) 1824-1827.
  28. T. Hayat, M.I. Khan, S. Qayyum, A. Alsaedi, Modern developments about statistical declaration and probable error for skin fraction and Nusselt number with copper and silver nanoparticles, Chinese J. Phys. 55 (2017) 2501-2513. https://doi.org/10.1016/j.cjph.2017.08.028

Cited by

  1. Entropy generation analysis in flow of thixotropic nanofluid vol.29, pp.12, 2018, https://doi.org/10.1108/hff-02-2019-0156
  2. Irreversibility in two-dimensional magneto-nanomaterial flow of Jeffrey fluid with Arrhenius activation energy vol.29, pp.12, 2018, https://doi.org/10.1108/hff-12-2018-0805
  3. Double stratified stagnation-point flow of Williamson nanomaterial with entropy generation through a porous medium vol.30, pp.4, 2018, https://doi.org/10.1108/hff-11-2018-0650
  4. Computational analysis of time-dependent viscous fluid flow and heat transfer vol.34, pp.13, 2018, https://doi.org/10.1142/s0217979220501416
  5. Numerical Computation of Dufour and Soret Effects on Radiated Material on a Porous Stretching Surface with Temperature-Dependent Thermal Conductivity vol.6, pp.6, 2021, https://doi.org/10.3390/fluids6060196