DOI QR코드

DOI QR Code

Particulate Matter Removal of Indoor Plants, Dieffenbachia amoena 'Marianne' and Spathiphyllum spp. according to Light Intensity

광량에 따른 실내식물 디펜바키아와 스파티필럼의 미세먼지 제거능

  • Kwon, Kei-Jung (Dept. of Horticultural Science, Chungbuk National University) ;
  • Park, Bong-Ju (Dept. of Horticultural Science, Chungbuk National University)
  • Received : 2018.01.24
  • Accepted : 2018.04.02
  • Published : 2018.04.30

Abstract

This study investigated the effect of light intensity on the removal of particulate matter by Dieffenbachia amoena 'Marianne' and Spathiphyllum spp.. An acrylic chamber ($600{\times}800{\times}1200mm$, $L{\times}W{\times}H$) modeled as an indoor space and a green bio-filter ($495{\times}495{\times}1000mm$, $L{\times}W{\times}H$) as an air purification device were made of acrylic. The removal of particulate matter PM10 and PM1, the photosynthetic rate, stomatal conductance, and number of stomata of Dieffenbachia amoena 'Marianne' and Spathiphyllum spp. were measured according to three different levels of light intensity (0, 30 and $60{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}PPFD$). Regarding the length of time taken for PM10 to reach $1{\mu}g$, the Dieffenbachia amoena 'Marianne' showed a significant difference according to the presence or absence of light, and there was no significant difference shown between light intensity of 30 and $60{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}PPFD$. As for the Spathiphyllum spp., there was no significant difference between 0 and $30{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}PPFD$, while a significant difference was shown at $60{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}PPFD$. After 90 minutes, the PM1, PM10, and $CO_2$ residuals of the Spathiphyllum spp. were lowest at $60{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}PPFD$. The remaining amount of PM1 and PM10 was lower with the Spathiphyllum spp. than with the Dieffenbachia amoena 'Marianne', even at $0{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}PPFD$. With both plants, the higher the light intensity, the higher the photosynthetic rate, while the stomatal conductance did not show any significant difference. Spathiphyllum spp. showed a higher photosynthetic rate and stomatal conductance and a greater number of stomata than Dieffenbachia amoena 'Marianne', and stomata were observed in both the front and back sides of the leaves. The air purification effect of Spathiphyllum spp. is considered to be better than Dieffenbachia amoena 'Marianne' at the same light intensity due to such plant characteristics. Therefore, in order to select effective indoor plants for the removal of particulate contamination in an indoor space, the characteristics of plants such as the photosynthetic rate and the number and arrangement of stomata according to indoor light intensity should be considered.

본 연구는 실내공간을 모형화한 아크릴챔버($600{\times}800{\times}1,200mm$, $L{\times}W{\times}H$)와 공기정화 장치인 그린바이오필터($495{\times}495{\times}1,000mm$, $L{\times}W{\times}H$)를 아크릴로 제작하여 광량 0, 30, $60{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}PPFD$의 3수준에 따른 디펜바키아와 스파티필럼의 미세먼지(PM10) 및 초미세먼지(PM1) 제거능과 두식물의 광합성율, 기공전도도, 기공수를 비교하였다. PM10이 $1{\mu}g$이 될 때까지 걸리는 시간에 있어서 디펜바키아는 광의 유무에 따른 차이가 유의하게 나타났으며, 30과 $60{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}PPFD$에서는 유의적인 차이가 없었다. 스파티필럼은 0과 $30{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}PPFD$에서는 유의적인 차이가 없었으나, $60{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}PPFD$에서 유의적인 차이를 보였다. 90분 경과 후, $60{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}PPFD$에서 스파티필럼의 PM1, PM10 잔존량이 가장 적었으며, 이때 이산화탄소 잔존량도 가장 낮은 것으로 나타났다. 스파티필럼은 $0{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}PPFD$에서도 PM1, PM10 잔존량이 디펜바키아보다 낮은 것으로 나타났다. 두 식물 모두 광량이 높을수록 광합성율이 높게 나타났으며, 기공전도도는 유의적인 차이가 없었다. 스파티필럼은 디펜바키아보다 광합성율과 기공전도가 높았고, 기공수가 많았으며, 잎의 앞 뒷면 모두에서 기공이 관찰되었다. 이러한 식물적 특성으로 인하여 같은 광량에서 스파티필럼의 공기정화 효과가 디펜바키아보다 더 좋았던 것으로 판단된다. 따라서 효과적인 실내 미세먼지 제거를 위해서는 실내광량에 따른 식물의 광합성율과 기공수, 기공의 배치형태 등 식물 각각의 특성을 고려해야 할 것으로 판단된다.

Keywords

References

  1. Baek, S. O. and S. Y. Park(2005) Chemical characteristics and indicators of environmental tobacco smoke. Korean Journal of Odor Research and Engineering 4: 168-176.
  2. Beckett, K. P., P. H. Freer-Smith and G Taylor(1998) Urban woodlands: their role in reducing the effects of particulate pollution. Environmental Pollution 99: 347-360. https://doi.org/10.1016/S0269-7491(98)00016-5
  3. BeruBe, K. A., K. J. Sexton, T. P. Jone, T. Moreno, S. Anderson, and R. J. Richards(2004) The spatial and temporal variations in PM10 mass from six UK home. Science of the Total Environment 324: 41-53. https://doi.org/10.1016/j.scitotenv.2003.11.003
  4. Bunce, J. A.(1996) Does transpiration control stomatal responses to water vapor pressure deficit?. Plant, Cell and Environment 19: 131-135.
  5. Dzierzanowski, K., R. Popek, H. Gawronska, A. Saebo and S. W. Gawronski(2011) Deposition of particulate matter of different size fractions on leaf surfaces and in waxes of urban forest species. International Journal of Phytoremediation 13: 1037-1046. https://doi.org/10.1080/15226514.2011.552929
  6. Espinosa, A. J. F. and S. R. Oliva(2006) The composition and rela- tionships between trace element levels in inhalable atmospheric particles (PM10) and in leaves of Nerium oleander L. and Lantana camara L. Chemosphere 62: 1665-1672. https://doi.org/10.1016/j.chemosphere.2005.06.038
  7. Farmer, A.(2002) Effects of particulates. In: Bell JNB, Treshow M, editors. Air Pollution and Plant Life. Hoboken (NJ): John Wiley & Sons, Inc., pp. 187-199.
  8. Gawronska, H and B. Bakera(2015) Phytoremediation of particulate matter from indoor air by Chlorophytum comosum L. plants. Air Quality, Atmosphere & Health 8: 265-272. https://doi.org/10.1007/s11869-014-0285-4
  9. Irga, P. J., N. J. Paull, P. Abdo and F. R. Torpy(2017) An assessment of the atmospheric particle removal efficiency of an in room botanical biofilter system. Building and Environment 115: 281-290. https://doi.org/10.1016/j.buildenv.2017.01.035
  10. Kil, M. J., K. J. Kim, J. K. Cho and C. H. Park(2008) Formaldehyde gas removal effects and physiological responses of Fatsia japonica and Epipremnum aureum according to various light intensity. Korean Journal of Horticultural Science & Technology 26: 189-196.
  11. Kim, Y. J.(2003) Effect of Foliage Plants on Removal of Indoor Fine Particulate. Master's Thesis, Konkuk University. Seoul. Korea.
  12. Kim, Y. S., E. B. Shin, S. D. Kim, D. S. Kim, and J. M. Jeon.(1994) Measurements of carcinogenic air pollutants in Seoul metropolitan subway station. Journal of Environmental Health Sciences 20: 19-27.
  13. Kwon, K. J. and B. J. Park(2014) Removal of particulate matters of four foliage plant. Journal of Agriculture Science Research 30: 157- 160.
  14. Kwon, K. J. and B. J. Park(2015) Effect of light intensity on growth and leaf color of indoor foliage plants. Folwer Research Journal 23: 92-97. https://doi.org/10.11623/frj.2015.23.2.16
  15. Lee, J. H.(2003) A study on the rate of indoor air purification by plants and gauging compared with air clean instrument. Journal of The Korean Institute of Interior Landscape Architecture 5: 1-12.
  16. Lohr, V. I. and C. H. Pearson-Mims(1996) Particulate matter accumulation on horizontal surfaces in interiors: Influence of foliage plants. Atmospheric Environment 30: 2565-2568. https://doi.org/10.1016/1352-2310(95)00465-3
  17. Ottele, M., H. Bohemen and A. Fraaij(2010) Quantifying the deposition of particulate matter on climber vegetation on living walls. Ecological Engineering 36: 154-162. https://doi.org/10.1016/j.ecoleng.2009.02.007
  18. Paek, K. Y. and E. S. Jun(1995) Stomatal density, size and morphological characteristics in orchids. Korean Journal of Horticultural Science & Technology 36: 851-862.
  19. Park, I. S., Y. G. Shin, W. Oh and K. W. Kim(2013) Comparisons in pattern characteristics and chlorophyll contents of major foliages with variegated leaves. Korean Journal of Horticultural Science & Technology 31: 447-456. https://doi.org/10.7235/hort.2013.12208
  20. Park, S. A., M. G. Kim, M. H. Yoo, M. M. Oh and K. C. Son(2010) Plant physiological responses in relation to temperature, light intensity, and $CO_{2}$ concentration for the selection of efficient foliage plants on the improvement of indoor environment. Korean Journal of Horticultural Science & Technology 28: 928-936.
  21. Saebo, A., R. Popek, B. Nawrot, H. M. Hanslin, H. Gawronska and S. W. Gawronski(2012) Plant species differences in particulate matter accumulation on leaf surfaces. Science of the Total Environment 427-428: 347-354. https://doi.org/10.1016/j.scitotenv.2012.03.084
  22. Soreanu, G., M. Dixon and A. Darlington(2013) Botanical biofiltration of indoor gaseous pollutants. Chemical Engineering Journal 229: 585- 594. https://doi.org/10.1016/j.cej.2013.06.074
  23. Speak, A. F., J. J. Rothwell, S. J. Lindley and C. L. Smith(2012) Urban particulate pollution reduction by four species of green roof vegetation in a UK city. Atmospheric Environment 61: 283-293. https://doi.org/10.1016/j.atmosenv.2012.07.043
  24. Wolverton, B. C., A. Johnson and K. Bounds(1989) Inter Landscape Plants for Indoor air Pollution Abatement. NASA Report. pp. 1-21.
  25. Yang, J., Y. Qian and G. Peng(2008) Quantifying air pollution removal by green roofs in Chicago. Atmospheric Environment 42: 7266-7273. https://doi.org/10.1016/j.atmosenv.2008.07.003
  26. Yoon, J, W., K. C. Son, D. S. Yang and S. J. Kays(2009) Removal of indoor tobacco smoke under light and dark conditions as affected by foliage plants. Korean Journal of Horticultural Science & Technology 27: 312-318.
  27. Yoon, P. S.(1989) Flora of Horticultural ad Crop Plants in Korean. Jisik, Korean. pp. 944.