DOI QR코드

DOI QR Code

A fracture mechanics simulation of the pre-holed concrete Brazilian discs

  • Received : 2017.08.18
  • Accepted : 2018.02.08
  • Published : 2018.05.10

Abstract

Brazilian disc test is one of the most widely used experiments in the literature of geo-mechanics. In this work, the pre-holed concrete Brazilian disc specimens are numerically modelled by a two-dimensional discrete element approach. The cracks initiations, propagations and coalescences in the numerically simulated Brazilian discs (each containing a single cylindrical hole and or multiple holes) are studied. The pre-holed Brazilian discs are numerically tested under Brazilian test conditions. The single-holed Brazilian discs with different ratios of the diameter of the holes to that of the disc radius are modelled first. The breakage load in the ring type disc specimens containing an internal hole with varying diameters is measured and the crack propagation mechanism around the wall of the ring is investigated. The crack propagation and coalescence mechanisms are also studied for the case of multi-holes' concrete Brazilian discs. The numerical and experimental results show that the breaking mechanism of the pre-holed disc specimens is mainly due to the initiation of the radially induced tensile cracks which are growth from the surface of the central hole. Radially cracks propagated toward the direction of diametrical loading. It has been observed that for the case of disc specimens with multiple holes under diametrical compressive loading, the breaking process of the modelled specimens may occur due to the simultaneous cracks propagation and cracks coalescence phenomena. These results also show that as the hole diameter and the number of the holes increases both the failure stress and the crack initiation stress decreases. The experimental results already exist in the literature are quit agree with the proposed numerical simulation results which validates this simulation procedure.

Keywords

References

  1. Aliabadi, M.H. and Brebbia, C.A. (1993), Advances in Boundary Element Methods for Fracture Mechanics, Elsevier, Amsterdam, the Netherlands.
  2. Al-Shayea, N.A. (2005), "Crack propagation trajectories for rocks under mixed mode I-II fracture", Eng. Geol., 81(1), 84-97. https://doi.org/10.1016/j.enggeo.2005.07.013
  3. Amadei, B., Lin, C. and Jerry, D. (1996), "Recent extensions to the DDA method", Proceedings of the 1st International Forum on Discontinuous Deformation Analysis (DDA) and Simulations of Discontinuous Media, TSI Press, Mexico.
  4. Ashby, M.F. and Hallam, S.D. (1986), "The failure of brittle solids containing small cracks under compressive stress states", Acta Metal., 34(3), 497-510. https://doi.org/10.1016/0001-6160(86)90086-6
  5. Bagher Shemirani, A., Haeri, H., Sarfarazi, V. and Hedayat, A. (2017), "A review paper about experimental investigations on failure behaviour of non-persistent joint", Geomech. Eng., 13(4), 535-570.
  6. Bagher Shemirani, A., Naghdabadi, R. and Ashrafi, M. (2016), "Experimental and numerical study on choosing proper pulse shapers for testing concrete specimens by split Hopkinson pressure bar apparatus", Constr. Build. Mater., 125, 326-336. https://doi.org/10.1016/j.conbuildmat.2016.08.045
  7. Bagher Shemirani, A., Sarfarazi, V., Haeri, H., Marji, M., Hosseini, S. (2018), "A discrete element simulation of a punchthrough shear to investigate the confining pressure effects on the shear behaviour of concrete cracks", Comput. Concrete, 21(2), 189-197. https://doi.org/10.12989/CAC.2018.21.2.189
  8. Cundall, P.A. and Strack, O.D.L. (1979), "A discrete numerical model for granular assemblies", Geotech., 29(1), 47-65. https://doi.org/10.1680/geot.1979.29.1.47
  9. Gerges, N., Issa, C. and Fawaz, S. (2015), "Effect of construction joints on the splitting tensile strength of concrete", Case Stud. Constr. Mater., 3, 83-91. https://doi.org/10.1016/j.cscm.2015.07.001
  10. Ghazvinian, A., Sarfarazim, V., Schubert, W. and Blumel, M. (2012), "A study of the failure mechanism of planar nonpersistent open joints using PFC2D", Rock Mech. Rock Eng., 45(5), 677-693, https://doi.org/10.1007/s00603-012-0233-2
  11. Haeri, H. (2015), "Influence of the inclined edge notches on the shear-fracture behavior in edge-notched beam specimens", Comput. Concrete, 16(4), 605-623, https://doi.org/10.12989/cac.2015.16.4.605
  12. Haeri, H. (2015g), "Propagation mechanism of neighboring cracks in rock-like cylindrical specimens under uniaxial compression", J. Min. Sci., 51(3), 487-496. https://doi.org/10.1134/S1062739115030096
  13. Haeri, H. (2015h), "Simulating the crack propagation mechanism of pre-cracked concrete specimens under shear loading conditions", Strength Mater., 47(4), 618-632. https://doi.org/10.1007/s11223-015-9698-z
  14. Haeri, H. and Sarfarazi, V. (2016a), "The effect of micro pore on the characteristics of crack tip plastic zone in concrete", Comput. Concrete, 17(1), 107-112. https://doi.org/10.12989/cac.2016.17.1.107
  15. Haeri, H. and Sarfarazi, V. (2016b), "The effect of non-persistent joints on sliding direction of rock slopes", Comput. Concrete, 17(6), 723-737. https://doi.org/10.12989/cac.2016.17.6.723
  16. Haeri, H. and Sarfarazi, V. (2016c), "The deformable multilaminate for predicting the elasto-plastic behavior of rocks", Comput. Concrete, 18(2), 201-214. https://doi.org/10.12989/cac.2016.18.2.201
  17. Haeri, H., Khaloo, A. and Fatehi Marji, M. (2015), "Fracture analyses of different pre-holed concrete specimens under compression", Acta Mech. Sinic.
  18. Haeri, H., Khaloo, A. and Marji, M.F. (2015c), "Experimental and numerical simulation of the microcracks coalescence mechanism in rock-like materials", Strength Mater., 47(1), 740-754. https://doi.org/10.1007/s11223-015-9711-6
  19. Haeri, H., Khaloo, A. and Marji, M.F. (2015d), "A coupled experimental and numerical simulation of rock slope joints behavior", Arab. J. Geosci., 8(9), 7297-7308. https://doi.org/10.1007/s12517-014-1741-z
  20. Haeri, H., Khaloo, A. and Marji, M.F. (2015e), "Fracture analyses of different pre-holed concrete specimens under compression", Acta Mech. Sinic., 31(6), 855-870. https://doi.org/10.1007/s10409-015-0436-3
  21. Haeri, H., Khaloo, A. and Marji, M.F. (2015f), "Experimental and numerical analysis of Brazilian discs with multiple parallel cracks", Arab. J. Geosci., 8(8), 5897-5908. https://doi.org/10.1007/s12517-014-1598-1
  22. Haeri, H., Marji, M.F. and Shahriar, K. (2015b), "Simulating the effect of disc erosion in TBM disc cutters by a semi-infinite DDM", Arab. J. Geosci., 8(6), 3915-3927. https://doi.org/10.1007/s12517-014-1489-5
  23. Haeri, H., Sarfarazi, V. and Lazemi, H.A. (2016d), "Experimental study of shear behavior of planar non-persistent joint", Comput. Concrete, 17(5), 639-653. https://doi.org/10.12989/cac.2016.17.5.639
  24. Haeri, H., Shahriar, K., Marji, M.F. and Moarefvand, P. (2013), "Modeling the propagation mechanism of two random micro cracks in rock Samples under uniform tensile loading", Proceedings of the 13th International Conference on Fracture, Beijing, China.
  25. Haeri, H., Shahriar, K., Marji, M.F. and Moarefvand, P. (2014b), "Investigating the fracturing process of rock-like Brazilian discs containing three parallel cracks under compressive line loading", Strength Mater., 46(3), 133-148.
  26. Haeri, H., Shahriar, K., Marji, M.F. and Moarefvand, P. (2015a), "The HDD analysis of micro cracks initiation, propagation and coalescence in brittle substances", Arab. J. Geosci., 8(5), 2841-2852. https://doi.org/10.1007/s12517-014-1290-5
  27. He, L. and Ma, G.W. (2010), "Development of 3D numerical manifold method", Int. J. Comput. Meth., 7(1), 107-129. https://doi.org/10.1142/S0219876210002088
  28. Jespersen, C., Maclaughlin, M. and Hudyma, N. (2010), "Strength deformation modulus and failure modes of cubic analog specimens representing macroporus rock", Int. J. Rock Mech. Min. Sci., 47(8), 1349-1356. https://doi.org/10.1016/j.ijrmms.2010.08.015
  29. Lajtai, E.Z. and Lajtai, V.N. (1975), "The collapse of cavities", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 12(4), 81-86. https://doi.org/10.1016/0148-9062(75)90001-7
  30. Lin, P., Ma, T.H., Liang, Z.Z., Tang, C.A. and Wang, R.K. (2014), "Failure and overall stability analysis on high arch dam based on DFPA code", Eng. Fail Anal., 45, 164-184. https://doi.org/10.1016/j.engfailanal.2014.06.020
  31. Lin, P., Wang, R.K., Wong, R.H.C. and Zhou, W.Y. (2005), "Crack coalescence mechanism of brittle solids containing holes under uniaxial compression", Proceedings of the EuRock, London, U.K.
  32. Lin, P., Wong, R.H.C. and Tang, C.A. (2015), "Experimental study of coalescence mechanisms and failure under uniaxial compression of granite containing multiple holes", Int. J. Rock Mech. Min. Sci., 77, 313-327.
  33. Lin, P., Zhou, Y.N., Liu, H.Y. and Wang, C. (2013), "Reinforcement design and stability analysis for large-span tailrace bifurcated tunnels with irregular geometry", Tunn. Undergr. Space Technol., 38(9), 189-204. https://doi.org/10.1016/j.tust.2013.07.011
  34. Mellor, M. and Hawkes, I. (1971), "Mesurment of tensile strength by diametral compression on disc and annuli", Eng. Geol., 5(3), 173-225. https://doi.org/10.1016/0013-7952(71)90001-9
  35. Nemat-Nasser, S. and Horii, H. (1982), "Compression-induced nonlinear crack extension with application to splitting, exfoliation, and rockburst", J. Geophys. Res., 87(B8), 6805-6821. https://doi.org/10.1029/JB087iB08p06805
  36. Ozcebe, G. (2011), "Minimum flexural reinforcement for T-beams made of higher strength concrete", Can. J. Civil Eng., 26(5), 525-534. https://doi.org/10.1139/l99-013
  37. Park, C.H. and Bobet, A. (2009), "Crack coalescence in specimens with open and closed flaws: A comparison", Int. J. Rock Mech. Min. Sci., 46(5), 819-829. https://doi.org/10.1016/j.ijrmms.2009.02.006
  38. Robert, L.K. (1979), "Crack-crack and crack-hole interactions in stressed granite", Int. J. Rock Mech. Min. Sci., 16(1), 37-47.
  39. Roy, Y.A. and Narasimhan, R.A. (1999), "Finite element investigation of the effect of crack tip constraint on hole growth under mode I and mixed mode loading", Int. J. Sol. Struct., 36(10), 1427-1447. https://doi.org/10.1016/S0020-7683(98)00046-8
  40. Sammis, C.G. and Ashby, M.F. (1986), "The failure of brittle porous solids under compressive stress states", Acta Metall., 34(3), 511-526. https://doi.org/10.1016/0001-6160(86)90087-8
  41. Sardemir, M. (2016), "Empirical modeling of flexural and splitting tensile strengths of concrete containing fly ash by GEP", Comput. Concrete, 17(4), 489-498. https://doi.org/10.12989/cac.2016.17.4.489
  42. Sarfarazi, V., Faridi, H.R., Haeri, H. and Schubert, W. (2016b), "A new approach for measurement of anisotropic tensile strength of concrete", Adv. Concrete Constr., 3(4), 269-284. https://doi.org/10.12989/ACC.2015.3.4.269
  43. Sarfarazi, V., Ghazvinian, A., Schubert, W., Blumel, M. and Nejati, H.R. (2014), "Numerical simulation of the process of fracture of echelon rock joints", Rock Mech. Rock Eng., 47(4), 1355-1371. https://doi.org/10.1007/s00603-013-0450-3
  44. Sarfarazi, V., Haeri, H. and Bagher Shemirani, A. (2017a), "Direct and indirect methods for determination of mode I fracture toughness using PFC2D", Comput. Concrete, 20(1), 39-47. https://doi.org/10.12989/CAC.2017.20.1.039
  45. Sarfarazi, V., Haeri, H., Bagher Shemirani, A. and Zhu, Z. (2017b), "The effect of compression load and rock bridge geometry on the shear mechanism of weak plane", Geomech. Eng., 13(3), 57-63.
  46. Sarfarazi, V., Haeri, H., Bagher Shemirani, A., Hedayat, A. and Hosseini, S. (2017c), "Investigation of ratio of TBM disc spacing to penetration depth in rocks with different tensile strengths using PFC2D", Comput. Concrete, 20(4), 429-437.
  47. Shi, G.H. (1988), "Discontinuous deformation analysis a new numerical mode l for the statics and dynamics of block system", Ph.D. Dissertation, University of California, Berkeley, U.S.A.
  48. Sukumar, N.A. and Prevost, J.H. (2003), "Modeling quasi-static crack growth with the ex-tended finite element method, part I: Computer implementation", Int. J. Sol. Struct., 40(26), 7513-7537. https://doi.org/10.1016/j.ijsolstr.2003.08.002
  49. Tan, X.C., Kou, S.Q. and Lindqvist, P.A. (1998), "Application of the DDM and fracture mechanics model on the simulation of rock breakage by mechanical tools", Eng. Geol., 49(3-4), 277-284. https://doi.org/10.1016/S0013-7952(97)00059-8
  50. Tang, C.A. and Hudson, J.A. (2010), Rock Failure Mechanisms: Illustrated and Explained, CRC Press, Boca Raton, U.S.A.
  51. Wong, R.H.C. and Chau, K.T. (1998), "Crack coalescence in rocklike material containing two cracks", Int. J. Rock Mech. Min. Sci., 35(2), 147-164. https://doi.org/10.1016/S0148-9062(97)00303-3
  52. Yang, S.Q. (2015), "An experimental study on fracture coalescence characteristics of brittle sandstone specimens combined various flaws", Geomech. Eng., 8(4), 541-557. https://doi.org/10.12989/gae.2015.8.4.541
  53. Yang, S.T., Hu, X.Z. and Wu, Z.M. (2011), "Influence of local fracture energy distribution on maximum fracture load of threepoint-bending notched concrete beams", Eng. Fract. Mech., 78(18), 3289-3299. https://doi.org/10.1016/j.engfracmech.2011.09.019
  54. Yin, P. (2013), "Multiple surface crack coalescence mechanisms in granite", Ph.D. Dissertation, The Hong Kong Polytechnic University, Hong Kong.
  55. Zhang, X. and Wong, L.N.Y. (2012), "Cracking process in rock-like material containing a single flaw under uniaxial compression: A numerical study based on parallel bonded-particle model approach", Rock Mech. Rock Eng., 45(5), 711-737. https://doi.org/10.1007/s00603-011-0176-z
  56. Zhang, X. and Wong, R.H.C. (2013), "Crack initiation, propagation and coalescence in rock-like material containing two flaws: A numerical study based on bonded-particle model approach [J]", Rock Mech. Rock Eng., 46(5), 1001-1021. https://doi.org/10.1007/s00603-012-0323-1
  57. Zhao, C. (2015), "Analytical solutions for crack initiation on floor-strata interface during mining", Geomech. Eng., 8(2), 237-255. https://doi.org/10.12989/gae.2015.8.2.237
  58. Zheng, H. (2009), "Discontinuous deformation analysis based on complementary theory", Sci. Chin. Ser. E Technol. Sci., 52(9), 2547-2554. https://doi.org/10.1007/s11431-009-0256-4