References
- Bich, D.H., Dung, D.V. and Nam, V.H. (2012), "Nonlinear dynamical analysis of eccentrically stiffened functionally graded cylindrical panels", Compos. Struct., 94(8), 2465-2473. https://doi.org/10.1016/j.compstruct.2012.03.012
- Bich, D.H., Dung, D.V., Nam, V.H. and Phuong, N.T. (2013), "Nonlinear static and dynamic buckling analysis of imperfect eccentrically stiffened functionally graded circular cylindrical thin shells under axial compression", Int. J. Mech. Sci., 74, 190-200. https://doi.org/10.1016/j.ijmecsci.2013.06.002
- Bich, D.H., Dung, D.V., Nam, V.H. and Phuong, N.T. (2013), "Nonlinear static and dynamic buckling analysis of imperfect eccentrically stiffened functionally graded circular cylindrical thin shells under axial compression", Int. J. Mech. Sci., 74, 190-200. https://doi.org/10.1016/j.ijmecsci.2013.06.002
- Brush, D.O. and Almroth, B.O. (1975), Buckling of Bars, Plates and Shells, Mc Graw-Hill. New York, U.S.A.
- Chen, M., Xie, K., Jia, W. and Xu, K. (2015), "Free and forced vibration of ring-stiffened conical-cylindrical shells with arbitrary boundary conditions", Ocean Eng., 108, 241-256. https://doi.org/10.1016/j.oceaneng.2015.07.065
- Darabi, M., Darvizeh, M. and Darvizeh, A. (2008), "Non-linear analysis of dynamic stability for functionally graded cylindrical shells under periodic axial loading", Compos. Struct., 83(2), 201-211. https://doi.org/10.1016/j.compstruct.2007.04.014
- Darvizeh, M., Darvizeh, A., Shaterzadeh, A.R. and Ansari, R. (2010), "Thermal buckling of spherical shells with cut-out", J. Therm. Stress., 33(5), 441-458. https://doi.org/10.1080/01495731003738432
- Duc, N.D. and Thang, P.T. (2014), "Nonlinear buckling of imperfect eccentrically stiffened metal-ceramic-metal S-FGM thin cicular cylindrical shells with temperature-dependent properties in thermal environments", Int. J. Mech. Sci., 81, 17-25. https://doi.org/10.1016/j.ijmecsci.2014.01.016
- Duc, N.D. and Thang, P.T. (2015), "Nonlinear dynamic response and vibration of shear deformable imperfect eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations", Aerosp. Sci. Technol., 40, 115-127. https://doi.org/10.1016/j.ast.2014.11.005
- Dung, D.V. and Nam, V.H. (2014), "Nonlinear dynamic analysis of eccentrically stiffened functionally graded circular cylindrical thin shells under external pressure and surrounded by an elastic medium", Eur. J. Mech.-A/Sol., 46, 42-53. https://doi.org/10.1016/j.euromechsol.2014.02.008
- Ghiasian, S.E., Kiani, Y. and Eslami, M.R. (2013), "Dynamic buckling of suddenly heated or compressed FGM Beams resting on non-linear elastic foundation", Compos. Struct., 106, 225-234. https://doi.org/10.1016/j.compstruct.2013.06.001
- Paliwal, D.N., Pandey, R.K. and Nath, T. (1996), "Free vibration of circular cylindrical shell on Winkler and Pasternak foundation", Int. J. Press. Vess. Pip., 69(1), 79-89. https://doi.org/10.1016/0308-0161(95)00010-0
- Shaterzadeh, A. and Foroutan, K. (2016), "Post-buckling of cylindrical shells with spiral stiffeners under elastic foundation", Struct. Eng. Mech., 60(4), 615-631. https://doi.org/10.12989/sem.2016.60.4.615
- Shaterzadeh, A.R., Rezaei, R. and Abolghasemi, S. (2015), "Thermal buckling analysis of perforated functionally graded plates", J. Therm. Stress., 38(11), 1248-1266. https://doi.org/10.1080/01495739.2015.1073525
- Sheng, G.G. and Wang, X. (2008), "Thermomechanical vibration analysis of a functionally graded shell with flowing fluid", Eur. J. Mech.-A/Sol., 27(6), 1075-1087. https://doi.org/10.1016/j.euromechsol.2008.02.003
- Sofiyev, A.H. (2005), "The stability of compositionally graded ceramic-metal cylindrical shells under aperiodic axial impulsive loading", Compos. Struct., 69(2), 247- 257. https://doi.org/10.1016/j.compstruct.2004.07.004
- Sofiyev, A.H. (2009), "The vibration and stability behavior of freely supported FGM conical shells subjected to external pressure", Compos. Struct., 89(3), 356-366. https://doi.org/10.1016/j.compstruct.2008.08.010
- Sofiyev, A.H., Hui, D., Haciyev, V.C., Erdem, H., Yuan, G.Q., Schnack E. and Guldal, V. (2017), "The nonlinear vibration of orthotropic functionally graded cylindrical shells surrounded by an elastic foundation within first order shear deformation theory", Compos. Part B: Eng., 116, 170-185. https://doi.org/10.1016/j.compositesb.2017.02.006
- Sofiyev, A.H., Karaca, Z. and Zerin, Z. (2017), "Non-linear vibration of composite orthotropic cylindrical shells on the nonlinear elastic foundations within the shear deformation theory", Compos. Struct., 159, 53-62. https://doi.org/10.1016/j.compstruct.2016.09.048
- Tang, D., Yao, X. Wu, G. and Peng, Y. (2017), "Free and forced vibration analysis of multi-stepped circular cylindrical shells with arbitrary boundary conditions by the method of reverberation-ray matrix", Thin-Wall. Struct., 116, 154-168. https://doi.org/10.1016/j.tws.2017.03.023
- Volmir, A.S. (1972), Non-Linear Dynamics of Plates and Shells, Science Edition M.
Cited by
- Mechanical analysis of functionally graded spherical panel resting on elastic foundation under external pressure vol.74, pp.2, 2018, https://doi.org/10.12989/sem.2020.74.2.297
- Asymmetric Large Deformation Superharmonic and Subharmonic Resonances of Spiral Stiffened Imperfect FG Cylindrical Shells Resting on Generalized Nonlinear Viscoelastic Foundations vol.12, pp.5, 2018, https://doi.org/10.1142/s1758825120500520