DOI QR코드

DOI QR Code

A Study on Crystallization of Thermoplastic Aromatic Polymer

열가소성 방향족 폴리머의 결정화 특성에 대한 연구

  • Received : 2018.04.09
  • Accepted : 2018.04.27
  • Published : 2018.04.30

Abstract

Thermoplastic composite has been limitedly used in high performance aerospace industry due to relatively low mechanical properties even though it has various advantages. But, thermoplastic aromatic polymer composite has recently been researched and utilized much. In this study, PEEK and PPS neat resin film as representative thermoplastic aromatic polymer were processed through continuous heating, cooling and reheating cycle. Property change such as glass transition temperature and melting temperature were identified and crystallinity variation by different cooling rate were evaluated. In the first (heating) run, polymer specimens were kept for 5 minutes at higher temperature than melting point to remove previous thermal history, and crystallization reaction was controlled by adjusting cooling rate to 2, 5, 10, 20 and $40^{\circ}C/minute$ in the second (cooling) run. In the third (heating) run, specimen crystallinity were verified by measuring the melting enthalpy. The initial specimens containing high portion of amorphous structure exhibited cold crystallization and clear glass transition in the first run whereas they did not show in the third run due to the increase of crystalline structure portion. As cooling rate decreases through the second cooling run, the crystallinity of the specimen increased. PEEK polymer had 21.9~39.3% crystallinity depending on cooling rate change whereas PPS polymer showed 29.1~31.2%.

열가소성 복합재료는 다양한 장점에도 불구하고 기계적 특성이 낮아 고성능 항공산업 분야에서는 제한적으로 사용되어 왔으나 최근 열가소성 방향족 폴리머 복합재들이 많이 연구/활용되고 있다. 본 연구에서는 대표적인 열가소성 방향족 폴리머인 PEEK와 PPS Neat 수지 필름을 DSC 기기를 이용하여 가열, 냉각 및 재 가열 사이클을 연속적으로 수행하여 유리전이온도 및 용융온도 등의 특성변화를 확인하고 냉각속도에 따른 결정화도(Crystallinity)의 차이를 평가하였다. 1차 가열단계에서 각 폴리머의 용융온도보다 높은 온도에 5분간 유지시켜 이전 열이력을 제거하였고 2차 냉각단계에서 냉각속도를 분당 2, 5, 10, 20 및 $40^{\circ}C$로 조절/적용함으로서 결정화반응을 제어하였으며, 3차 가열단계에서 재가열하여 용융엔탈피를 측정함으로서 결정화도 차이를 확인하였다. 높은 비정질 영역을 가진 시편의 첫 번째 가열시 냉각결정화 현상이 일어나고 뚜렷한 유리상 전이구역을 확인할 수 있었던 반면에 결정질 영역이 증가된 재가열시에는 냉각결정화 현상이 일어나지 않고 상대적으로 유리상 전이구역이 약해지는 것을 확인하였다. 2차 냉각단계에서 냉각속도가 느려짐에 따라 결정화도가 높아졌는데 PEEK의 경우 냉각속도의 차이에 따라 21.9~39.3% 결정화도를 보였으며, PPS는 29.1~31.2% 결정화도 차이를 얻을 수 있었다.

Keywords

References

  1. Jerome PORA, "Composite Materials in the Airbus A380 - From History to Future -", Proceding of the 13 International Committee on Composite Materials, Beijing, China, 2001.
  2. Offringa, A.R., "Thermoplastic Composites in Aerospace- proven Through Cost-effective Processing", Proceeding of the 41th International Conference on Automated Composites (ICAC), Nottingham, UK, 6-7 September, 1995.
  3. Campbell, F.C., "Mnaufacturing Processes for Advanced Composites", Elsevier Ltd, Oxford UK, 2004.
  4. Frederic Neil Cogswell, "Thermoplastic Aromatic Polymer Composites", Butterworth-Heinemann Ltd, Oxford UK, 1992.
  5. Ayman A. Aly, "Heat Treatment of Polymers: A Review", International Journal of Materials Chemistry and Physics, Vol. 1, No. 2, 2015, pp. 132-140.
  6. "Plastics - Differential Scanning Calorimetry (DSC) Part 1: General Principles", EN ISO 11357-1, 1997.
  7. Plastics - Differential Scanning Calorimetry (DSC) Part 2: Determination of Glass Transition Temperature", EN ISO 11357-2, 1999.
  8. "Plastics - Differential Scanning Calorimetry (DSC) Part 3: Determination of Temperature and Enthalpy of Melting and Crystallization", EN ISO 11357-3, 1999.
  9. Baek, Y.M., Shin, P.S., Kim, J.H., Park, H.S., Kwon, D.J., and Park, J.M., "Comparison of Mechanical and Interfacial Prop- erties of Carbon Fiber Reinforced Recycled PET Composites with Thermoforming Temperature and Time", Journal of the Korean society for Composite Materials, Vol. 30, No. 3, 2017, pp. 175-180.
  10. Luke Harris, A Study of the Crystallisation Kinetics in PEEK and PEEK Composites, Ph D Thesis, University of Birmingham, 2011.
  11. Blond, D., Vieille, B., Gomina, M., and Taleb, L., "Correlation between Physical Properties, Microstructure and Thermo- mechanical Behavior of PPS-based Composites Processed by Stamping", Journal of Reinforced Plastics and Composites, Vol. 33, No. 17, 2014, pp. 1656-1668. https://doi.org/10.1177/0731684414541846
  12. Lizundia, E., Petisco, S., and Sarasua, J.-R., "Phase-structure and Mechanical Properties of Isothermally Melt-and Cold-crystallized Poly(L-lactide)", Journal of the Mechanical Behavior of Biomedical Materials, Vol. 17, 2013, pp. 242-251. https://doi.org/10.1016/j.jmbbm.2012.09.006
  13. Li, Y., Fu, H., and Han, Z., "Simulation of Non-isothermal Crystallization Kinetics of Thermoplastics During Fiber Place- ment Process", Polymers and Polymer Composites, Vol. 20, No. 1, 2012, pp. 145-150.

Cited by

  1. 유리섬유/폴리카보네이트 복합재료의 기지 분자량에 따른 함침 및 기계적 물성 평가 vol.34, pp.1, 2021, https://doi.org/10.7234/composres.2021.34.1.001
  2. Recent progress of 3D printed continuous fiber reinforced polymer composites based on fused deposition modeling: a review vol.56, pp.23, 2018, https://doi.org/10.1007/s10853-021-06111-w