References
- Ahouel, M., Houari, M.S.A., Bedia, E.A. and Tounsi, A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., Int. J., 20(5), 963-981. https://doi.org/10.12989/scs.2016.20.5.963
- Belkorissat, I., Houari, M.S.A., Tounsi, A., Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., Int. J., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063
- Bennai, R., Atmane, H.A. and Tounsi, A. (2015), "A new higher-order shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., Int. J., 19(3), 521-546. https://doi.org/10.12989/scs.2015.19.3.521
- Bouchafa, A., Bouiadjra, M.B., Houari, M.S.A. and Tounsi, A. (2015), "Thermal stresses and deflections of functionally graded sandwich plates using a new refined hyperbolic shear deformation theory", Steel Compos. Struct., Int. J., 18(6), 1493-1515. https://doi.org/10.12989/scs.2015.18.6.1493
- Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., Int. J., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227
- Chaht, F.L., Kaci, A., Houari, M.S.A., Tounsi, A., Beg, O.A. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., Int. J., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425
- Eichenfield, M., Camacho, R., Chan, J., Vahala, K.J. and Painter, O. (2009), "A picogram-and nanometre-scale photonic-crystal optomechanical cavity", Nature, 459(7246), 550-555. https://doi.org/10.1038/nature08061
- Emam, S.A. (2013), "A general nonlocal nonlinear model for buckling of nanobeams", Appl. Math. Model., 37(10), 6929-6939. https://doi.org/10.1016/j.apm.2013.01.043
- Frostig, Y. (2014), "Non-linear behavior of a face-sheet debonded sandwich panel-Thermal effects", Int. J. Non-Linear Mech., 64, 1-25. https://doi.org/10.1016/j.ijnonlinmec.2014.03.001
- Frostig, Y., Baruch, M., Vilnay, O. and Sheinman, I. (1992), "High-order theory for sandwich-beam behavior with transversely flexible core", J. Eng. Mech., 118(5), 1026-1043. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:5(1026)
- Frostig, Y., Phan, C.N. and Kardomateas, G.A. (2013), "Free vibration of unidirectional sandwich panels, Part I: Compressible core", J. Sandw. Struct. Mater., 45(4), 377-411.
- Ghavanloo, E. and Fazelzadeh, S.A. (2013), "Radial vibration of free anisotropic nanoparticles based on nonlocal continuum mechanics", Nanotechnology, 24(7), 075702. https://doi.org/10.1088/0957-4484/24/7/075702
- Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., Int. J., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235
- Hayati, H., Hosseini, S.A. and Rahmani, O. (2016), "Coupled twist-bending static and dynamic behavior of a curved single-walled carbon nanotube based on nonlocal theory", Microsyst. Technol., 23(7), 2393-2401.
- Hosseini, S. and Rahmani, O. (2016), "Surface effects on buckling of double nanobeam system based on nonlocal Timoshenko model", Int. J. Struct. Stabil. Dyn., 16(10), 1550077. https://doi.org/10.1142/S0219455415500777
- Jandaghian, A.A. and Rahmani, O. (2015), "On the buckling behavior of piezoelectric nanobeams: An exact solution", J. Mech. Sci. Technol., 29(8), 3175-3182. https://doi.org/10.1007/s12206-015-0716-7
- Khalili, S.M.R., Rahmani, O., Malekzadeh Fard, K. and Thomsen, O.T. (2014), "High-order modeling of circular cylindrical composite sandwich shells with a transversely compliant core subjected to low velocity impact", Mech. Adv. Mater. Struct., 21(8), 680-695. https://doi.org/10.1080/15376494.2012.707297
- Lashkari, M.J. and Rahmani, O. (2016), "Bending behavior of sandwich structures with flexible functionally graded core based on high-order sandwich panel theory", Meccanica, 51(5), 1093-1112. https://doi.org/10.1007/s11012-015-0263-4
- Miandoab, E.M., Yousefi-Koma, A. and Pishkenari, H.N. (2015), "Nonlocal and strain gradient based model for electrostatically actuated silicon nano-beams", Microsyst. Technol., 21(2), 457-464. https://doi.org/10.1007/s00542-014-2110-2
- Murmu, T. and Adhikari, S. (2010), "Nonlocal transverse vibration of double-nanobeam-systems", J. Appl. Phys., 108(8), 083514. https://doi.org/10.1063/1.3496627
- Murmu, T. and Adhikari, S. (2011a), "Axial instability of doublenanobeam-systems", Phys. Lett. A, 375(3), 601-608. https://doi.org/10.1016/j.physleta.2010.11.007
- Murmu, T. and Adhikari, S. (2011b), "Nonlocal vibration of bonded double-nanoplate-systems", Compos. Part B: Eng., 42(7), 1901-1911. https://doi.org/10.1016/j.compositesb.2011.06.009
- Murmu, T., Sienz, J., Adhikari, S. and Arnold, C. (2011), "Nonlocal buckling behavior of bonded double-nanoplatesystems", J. Appl. Phys., 110(8), 084316. https://doi.org/10.1063/1.3644908
- Najafi, F., Shojaeefard, M.H. and Googarchin, H.S. (2016), "Nonlinear low-velocity impact response of functionally graded plate with nonlinear three-parameter elastic foundation in thermal field", Compos. Part B: Eng., 107, 123-140. https://doi.org/10.1016/j.compositesb.2016.09.070
- Najafi, F., Shojaeefard, M.H. and Googarchin, H.S. (2017), "Nonlinear dynamic response of FGM beams with Winkler-Pasternak foundation subject to noncentral low velocity impact in thermal field", Compos. Struct., 167, 132-143. https://doi.org/10.1016/j.compstruct.2017.01.063
- Nguyen, N.T., Kim, N.I. and Lee, J. (2014), "Analytical solutions for bending of transversely or axially FG nonlocal beams", Steel Compos. Struct., Int. J., 17(5), 641-665. https://doi.org/10.12989/scs.2014.17.5.641
- Patti, A., Barretta, R., de Sciarra, F.M., Mensitieri, G., Menna, C. and Russo, P. (2015), "Flexural properties of multi-wall carbon nanotube/polypropylene composites: Experimental investigation and nonlocal modeling", Compos. Struct., 131, 282-289. https://doi.org/10.1016/j.compstruct.2015.05.002
- Phan, C.N., Frostig, Y. and Kardomateas, G.A. (2012a), "Analysis of sandwich beams with a compliant core and with in-plane rigidity-extended high-order sandwich panel theory versus elasticity", J. Appl. Mech., 79(4), 041001. https://doi.org/10.1115/1.4005550
- Phan, C.N., Kardomateas, G.A. and Frostig, Y. (2012b), "Global buckling of sandwich beams based on the extended high-order theory", AIAA Journal, 50(8), 1707-1716. https://doi.org/10.2514/1.J051454
- Pourseifi, M., Rahmani, O. and Hoseini, S.A.H. (2015), "Active vibration control of nanotube structures under a moving nanoparticle based on the nonlocal continuum theories", Meccanica, 50(5), 1351-1369. https://doi.org/10.1007/s11012-014-0096-6
- Rahmani, O. (2014), "On the flexural vibration of pre-stressed nanobeams based on a nonlocal theory", Acta Phys. Pol. A, 125(2), 532. https://doi.org/10.12693/APhysPolA.125.532
- Rahmani, O., Khalili, S.M.R. and Thomsen, O.T. (2012), "A highorder theory for the analysis of circular cylindrical composite sandwich shells with transversely compliant core subjected to external loads", Composite Structures, 94(7), 2129-2142. https://doi.org/10.1016/j.compstruct.2012.02.002
- Rahmani, O., Hosseini, S.A.H. and Hayati, H. (2016), "Frequency analysis of curved nano-sandwich structure based on a nonlocal model", Modern Physics Letters B, 30(10), 1650136.
- Reddy, J. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004
- Shojaeefard, M.H., Googarchin, H.S., Ghadiri, M. and Mahinzare, M. (2017), "Micro temperature-dependent FG porous plate: free vibration and thermal buckling analysis using modified couple stress theory with CPT and FSDT", Appl. Math. Model., 50, 633-655. https://doi.org/10.1016/j.apm.2017.06.022
- Shojaeefard, M.H., Googarchin, H.S., Mahinzare, M. and Ghadiri, M. (2018), "Free vibration and critical angular velocity of a rotating variable thickness two-directional FG circular microplate", Microsystem Technologies, 24(3), 1525-1543. https://doi.org/10.1007/s00542-017-3557-8
- Simsek, M. (2011), "Forced vibration of an embedded single-walled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory", Steel Compos. Struct., Int. J., 11(1), 59-76. https://doi.org/10.12989/scs.2011.11.1.059
- Wang, Q. and Varadan, V.K. (2006), "Vibration of carbon nanotubes studied using nonlocal continuum mechanics", Smart Mater. Struct., 15(2), 659. https://doi.org/10.1088/0964-1726/15/2/050
- Yuan, Z., Kardomateas, G.A. and Frostig, Y. (2015), "Finite element formulation based on the extended high-order sandwich panel theory", AIAA Journal, 53(10), 3006-3015. https://doi.org/10.2514/1.J053736
- Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., Int. J., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693
Cited by
- Moving axial load on dynamic response of single-walled carbon nanotubes using classical, Rayleigh and Bishop rod models based on Eringen’s theory vol.26, pp.11, 2018, https://doi.org/10.1177/1077546319890170