DOI QR코드

DOI QR Code

Fabrication of CNT dispersed Cu matrix composites by wet mixing and spark plasma sintering process

습식 교반 및 방전 플라즈마 소결 공정에 의한 CNT 분산 Cu 복합재료 제조

  • Cho, Seungchan (Composites Research Division, Korea Institute of Materials Science (KIMS)) ;
  • Jo, Ilguk (Composites Research Division, Korea Institute of Materials Science (KIMS)) ;
  • Lee, Sang-Bok (Composites Research Division, Korea Institute of Materials Science (KIMS)) ;
  • Lee, Sang-Kwan (Composites Research Division, Korea Institute of Materials Science (KIMS)) ;
  • Choi, Moonhee (Samsung Electro-mechanics) ;
  • Park, Jehong (Next Generation Materials Co., Ltd.) ;
  • Kwon, Hansang (Next Generation Materials Co., Ltd.) ;
  • Kim, Yangdo (School of Materials Science and Engineering, Pusan National University)
  • Received : 2018.04.09
  • Accepted : 2018.04.20
  • Published : 2018.04.28

Abstract

Multi-walled carbon nanotube (MWCNT)-copper (Cu) composites are successfully fabricated by a combination of a binder-free wet mixing and spark plasma sintering (SPS) process. The SPS is performed under various conditions to investigate optimized processing conditions for minimizing the structural defects of CNTs and densifying the MWCNT-Cu composites. The electrical conductivities of MWCNT-Cu composites are slightly increased for compositions containing up to 1 vol.% CNT and remain above the value for sintered Cu up to 2 vol.% CNT. Uniformly dispersed CNTs in the Cu matrix with clean interfaces between the treated MWCNT and Cu leading to effective electrical transfer from the treated MWCNT to the Cu is believed to be the origin of the improved electrical conductivity of the treated MWCNT-Cu composites. The results indicate the possibility of exploiting CNTs as a contributing reinforcement phase for improving the electrical conductivity and mechanical properties in the Cu matrix composites.

Keywords

References

  1. L. Lu, Y. Shen, X. Chen, L. Qian and K. Lu: Science 304 (2004) 422. https://doi.org/10.1126/science.1092905
  2. S.Z. Han, S.H. Lim, S. Kim, J. Lee, M. Goto, H.G. Kim, B. Han and K.H. Kim: Sci. Rep., 6 (2016) 30907. https://doi.org/10.1038/srep30907
  3. S.R. Bakshi, D. Lahiri and A. Agarwal: Int. Mater. Rev., 55 (2010) 41. https://doi.org/10.1179/095066009X12572530170543
  4. H. Kwon, M. Estili, K. Takagi, T. Miyazaki and A. Kawasaki: Carbon, 47 (2009) 570. https://doi.org/10.1016/j.carbon.2008.10.041
  5. H. Kwon, D.H. Park, J.F. Silvain, A. Kawasaki: Compos. Sci. Technol., 70 (2010) 546. https://doi.org/10.1016/j.compscitech.2009.11.025
  6. A.M.K. Esawi, K. Morsi, A. Sayed, M. Taher and S. Lanka: Compos. Sci. Technol., 70 (2010) 2237. https://doi.org/10.1016/j.compscitech.2010.05.004
  7. K.T. Kim, J. Eckert, S.B. Menzel, T. Gemming and S.H. Hong: Appl. Phys. Lett., 92 (2008) 121901. https://doi.org/10.1063/1.2899939
  8. S.I. Cha, K.T. Kim, S.N. Arshad, C.B. Mo and S.H. Hong: Adv. Mater., 17 (2005) 1377. https://doi.org/10.1002/adma.200401933
  9. S. Cho, K. Kikuchi, T. Miyazaki, K. Takagi, A. Kawasaki and T. Tsukada: Scr. Mater., 63 (2010) 375. https://doi.org/10.1016/j.scriptamat.2010.04.024
  10. H. Kwon, M. Takamichi, A. Kawasaki and M. Leparoux: Mater. Chem. Phys., 138 (2013) 787. https://doi.org/10.1016/j.matchemphys.2012.12.062
  11. K. Morsi, A. El-Desouky, B. Johnson, A. Mar, and S. Lanka: Scr. Mater., 61 (2009) 395. https://doi.org/10.1016/j.scriptamat.2009.04.026
  12. S. Cho, K. Kikuchi and A. Kawasaki: Acta Mater., 60 (2012) 726. https://doi.org/10.1016/j.actamat.2011.09.056
  13. S. Cho, K. Kikuchi, E. Lee, M. Choi, I. Jo, S.-B. Lee, S.- K. Lee and A. Kawasaki: Sci. Rep., 7 (2017) 14943. https://doi.org/10.1038/s41598-017-14915-7
  14. A. Maqbool, M.A. Hussain, F.A. Khalid, N. Bakhsh, A. Hussain and M.H. Kim: Mater. Charact., 86 (2013) 39. https://doi.org/10.1016/j.matchar.2013.09.006
  15. P. Bansal, A.P. Deshpande and M.G. Basavaraj: J. Colloid Interf. Sci., 492 (2017) 92. https://doi.org/10.1016/j.jcis.2016.12.059
  16. S. Cho: Ph. D. Dissertation, Fabrication of carbon nano- tube reinforced copper composites using spark plasma sintering and their thermo-mechanical properties, Tohoku University, Japan (2010) 68.
  17. T. Saito, K. Matsushige and K. Tanaka: Physica B, 323 (2002) 280. https://doi.org/10.1016/S0921-4526(02)00999-7
  18. Y. Kim, D. Lee, Y. Oh, J. Choi and S. Baik: Synth. Met., 156 (2006) 999. https://doi.org/10.1016/j.synthmet.2006.06.004
  19. H. Hu, A. Yu, E. Kim, B. Zhao, M. E. Itkis, E. Bekyarova and R. C. Haddon: J. Phys. Chem. B, 109 (2005) 11520. https://doi.org/10.1021/jp050781w
  20. J. Zhang, H. Zou, Q. Qing, Y. Yang, Q. Li, Z. Liu, X. Guo and Z. Du: J. Phys. Chem. B, 107 (2003) 3712. https://doi.org/10.1021/jp027500u
  21. M. Estili and A. Kawasaki: Adv. Mater., 22 (2010) 607. https://doi.org/10.1002/adma.200902140