DOI QR코드

DOI QR Code

Research on Classification of Human Emotions Using EEG Signal

뇌파신호를 이용한 감정분류 연구

  • Zubair, Muhammad (Information and communication networks Department, University of Science and Technology) ;
  • Kim, Jinsul (Department of Electronics and Computer Engineering, Chonnam National University) ;
  • Yoon, Changwoo (Electronics and Telecommunication Research Institute)
  • Received : 2018.04.18
  • Accepted : 2018.04.28
  • Published : 2018.04.30

Abstract

Affective computing has gained increasing interest in the recent years with the development of potential applications in Human computer interaction (HCI) and healthcare. Although momentous research has been done on human emotion recognition, however, in comparison to speech and facial expression less attention has been paid to physiological signals. In this paper, Electroencephalogram (EEG) signals from different brain regions were investigated using modified wavelet energy features. For minimization of redundancy and maximization of relevancy among features, mRMR algorithm was deployed significantly. EEG recordings of a publically available "DEAP" database have been used to classify four classes of emotions with Multi class Support Vector Machine. The proposed approach shows significant performance compared to existing algorithms.

Affective Computing은 HCI (Human Computer Interaction) 및 건강 관리 분야에서 다양한 애플리케이션이 개발됨에 따라 최근 몇 년 동안 관심이 높아지고 있다. 이에 필수적으로 필요한 인간의 감정 인식에 대한 중요한 연구가 있었지만, 언어 및 표정과 비교하여 심전도 (ECG) 또는 뇌파계 (EEG) 신호와 같은 생리적 신호 분석에 따른 감정 분석에 대한 관심은 적었다. 본 논문에서는 이산 웨이블릿 변환을 이용한 EEG 기반 감정 인식 시스템을 제안하고 감정 관련 정보를 얻기 위해 다른 뇌파와 뇌 영역을 연구 하였으며, 웨이블릿 계수에 기초한 특징 세트가 웨이블릿 에너지 특징과 함께 추출되었다. 중복성을 최소화하고 피처 간의 관련성을 극대화하기 위해 mRMR 알고리즘이 피쳐 선택에 적용된다. 다중클래스 Support Vector Machine을 사용하여 4 가지 종류의 인간 감정을 크게 분류하였으며 공개적으로 이용 가능한 "DEAP"데이터베이스의 뇌파 기록이 실험에서 사용되었다. 제안 된 접근법은 기존의 알고리즘에 비해 향상된 성능을 보여준다.

Keywords

References

  1. Bilal, Muhammad, and Shin-Gak Kang. "An Authentication Protocol for Future Sensor Networks." Sensors 17.5 (2017): 979. https://doi.org/10.3390/s17050979
  2. Paul Ekman, Emotions Revealed. TIMES BOOKS, 2003.
  3. L. Zhang, D. Tjondronegoro, "Facial expression recognition using facial movement features," IEEE Transactions on Affective Computing, vol. 2, pp. 219-229, 2011. https://doi.org/10.1109/T-AFFC.2011.13
  4. K. Wang, A. Ning, B.N. Li and Y. Zhang, "Speech emotion recognition using Fourier parameters," IEEE Transactions on Affective Computing, vol. 6, pp. 69-75, 2015. https://doi.org/10.1109/TAFFC.2015.2392101
  5. J. Anttonen and V. Surakka, "Emotions and Heart Rate While Sitting on a Chair," Proc. SIGCHI Conf. Human Factors in Computing Systems, pp. 491-499. 2005.
  6. C.M. Jones and T. Troen, "Biometric Valence and Arousal Recognition," Proc. 19th Australasian Conf. Computer-Human Interaction, pp. 191-194, 2007.
  7. Posner et al. The circumplex model of affect: An integrative approach to affective neuroscience, cognitive development, and psychopathology.Dev. Psychopathol. 17, (2005).
  8. P. J. Lang, M. M. Bradley, and B. N. Cuthbert, "International affective picture system (IAPS): Affective ratings of pictures and instruction manual," Tech. Rep. A-8, 2008.
  9. M. M. Bradley and P. J. Lang, "The international affective digitized sounds (; iads-2): Affective ratings of sounds and instruction manual," Univ. of Florida, Gainesville, FL, USA, Tech. Rep. B-3, 2007.
  10. Sourina, Olga, and Yisi Liu. "A Fractal-based Algorithm of Emotion Recognition from EEG using Arousal-Valence Model." BIOSIGNALS. 2011.
  11. Petrantonakis et al. "Emotion recognition from EEG using higher order crossings." IEEE Transactions on Information Technology in Biomedicine 14.2 (2010): 186-197. https://doi.org/10.1109/TITB.2009.2034649
  12. Lan, Tian, et al. "Estimating cognitive state using EEG signals." Signal Processing Conference, 2005 13th European. IEEE, 2005.
  13. Murugappan et al."Classification of human emotion from EEG using discrete wavelet transform." Journal of Biomedical Science and Engineering 3.04 (2010): 390. https://doi.org/10.4236/jbise.2010.34054
  14. S.Koelstraet al., "Single trial classificationof EEG and peripheral physiological signals for recognitionof emotions induced by music videos," in Proceeding of the International Conference on Brain Informatics (BI '10), pp. 89-100, Toronto, Canada, 2010.
  15. U. Wijeratneet al, "Intelligent emotion recognition system using electroencephalography and active shapemodels," in Proceedings of the IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES '12), pp. 636-641, 2012.
  16. Z. Khalili and M. H. Moradi, "Emotion recognition system using brain and peripheral signals: using correlation dimension to improve the results of EEG," in Proceedings of the International Joint Conference on Neural Networks (IJCNN '09), pp.1571-1575, Atlanta, Ga, USA, June 2009.
  17. M. Soleymani et al. A multimodal database for affect recognition and implicit tagging. IEEE Transactions on Affective Computing, 2012, 3. Jg., Nr. 1, S. 42-55. https://doi.org/10.1109/T-AFFC.2011.25
  18. Subramanian R, Wache J, Abadi M, Vieriu R, Winkler S, Sebe N. ASCERTAIN: Emotion and personality recognition using commercial sensors. IEEE Transactions on Affective Computing. 2016 Nov 4.
  19. Koelstra, Sander, et al. "Deap: A database for emotion analysis; using physiological signals." IEEE Transactions on Affective Computing 3.1 (2012): 18-31. https://doi.org/10.1109/T-AFFC.2011.15
  20. Daimi, Syed Naser, and GoutamSaha. "Classification of emotions induced by music videos and correlation with participants' rating." Expert Systems with Applications 41.13 (2014): 6057-6065. https://doi.org/10.1016/j.eswa.2014.03.050

Cited by

  1. Relationship between Self Presence and EEG in Health Serious Game vol.19, pp.11, 2018, https://doi.org/10.9728/dcs.2018.19.11.2119