DOI QR코드

DOI QR Code

LSTM-based Anomaly Detection on Big Data for Smart Factory Monitoring

스마트 팩토리 모니터링을 위한 빅 데이터의 LSTM 기반 이상 탐지

  • Nguyen, Van Quan (School of Electronics and Computer Engineering, Chonnam National University) ;
  • Van Ma, Linh (School of Electronics and Computer Engineering, Chonnam National University) ;
  • Kim, Jinsul (School of Electronics and Computer Engineering, Chonnam National University)
  • ;
  • ;
  • 김진술 (전남대학교 전자컴퓨터공학과)
  • Received : 2018.04.10
  • Accepted : 2018.04.25
  • Published : 2018.04.30

Abstract

This article presents machine learning based approach on Big data to analyzing time series data for anomaly detection in such industrial complex system. Long Short-Term Memory (LSTM) network have been demonstrated to be improved version of RNN and have become a useful aid for many tasks. This LSTM based model learn the higher level temporal features as well as temporal pattern, then such predictor is used to prediction stage to estimate future data. The prediction error is the difference between predicted output made by predictor and actual in-coming values. An error-distribution estimation model is built using a Gaussian distribution to calculate the anomaly in the score of the observation. In this manner, we move from the concept of a single anomaly to the idea of the collective anomaly. This work can assist the monitoring and management of Smart Factory in minimizing failure and improving manufacturing quality.

이 논문에서는 이러한 산업 단지 시스템에서의 비정상적인 동작이 일어날 때, 시간 계열의 데이터를 분석하기 위하여 Big 데이터를 이용한 접근을 기반으로 하는 머신 러닝을 보여줍니다. Long Short-Term Memory (LSTM) 네트워크는 향상된 RNN버전으로서 입증되었으며 많은 작업에 유용한 도움이 되었습니다. 이 LSTM 기반 모델은 시간적 패턴뿐만 아니라 더 높은 레벨의 시간적 특징을 학습 한 다음, 미래의 데이터를 예측하기 위해 예측 단계에 사용됩니다. 예측 오차는 예측 인자에 의해 예측 된 결과와 실제 예상되는 값의 차이입니다. 오차 분포 추정 모델은 가우스 분포를 사용하여 관찰 스코어의 이상을 계산합니다. 이러한 방식으로, 우리는 하나의 비정상적 데이터의 개념에서 집단적인 비정상적 데이터 개념으로 바뀌어 갑니다. 이 작업은 실패를 최소화하고 제조품질을 향상시키는 Smart Factory의 모니터링 및 관리를 지원할 수 있습니다.

Keywords

References

  1. B. Chen, J. Wan, L. Shu, P. Li, M. Mukherjee, and B. Yin, "Smart Factory of Industry 4.0: Key Technologies, Application Case, and Challenges," IEEE Access, Vol. 6, pp. 6505-6519, 2017.
  2. T. Skripcak and P. Tanuska, "Utilisation of on-line machine learning for SCADA system alarms forecasting," Proceedings of 2013 Science and Information Conference, SAI 2013, pp. 477-484, 2013.
  3. S. Mohanty, M. Jagadeesh, and H. Srivatsa, " 'Big Data' warehouse, 'BI'implementations and analytics," Apress, 2013.
  4. I. Garitano, R. Uribeetxeberria and U. Zurutuza, "A review of SCADA Anomaly Detection System," Soft Computing Models in Industrial and Environmental Applications, 6th International Conference SOCO 2011, Vol. 87, 2011.
  5. M. Shafiee and M. Finkelstein, "An optimal age-based group maintenance policy for multi-unit degrading systems," Reliability Engineering \& System Safety, Vol. 134, pp. 230-238, 2015. https://doi.org/10.1016/j.ress.2014.09.016
  6. Kv, R. Satish, and N. P. Kavya, "Trend Analysis of E-Commerce Data using Hadoop Ecosystem," International Journal of Computer Applications, Vol. 147, No. 6, pp. 1-5, 2016.
  7. J. Dean and S. Ghemawat, "MapReduce: simplified data processing on large clusters," Communication of ACM, Vol. 51, No. 1, pp. 107-113, 2008. https://doi.org/10.1145/1327452.1327492
  8. Flume: http://flume.apache.org/
  9. Hive:https://hive.apache.org/
  10. Zeppelin: https://zeppelin.apache.org/docs/0.6.2/
  11. L. Zhou, S. Pan, J. Wang, and A. V. Vasilakos, "Machine learning on big data: Opportunities and challenges," Neurocomputing, Vol. 237, pp. 350-361, 2017. https://doi.org/10.1016/j.neucom.2017.01.026
  12. Jordan, I. Michael and M. M. Tom, "Machine learning: Trends, perspectives, and prospects," Science , Vol.349, No. 6245, pp. 255-260, 2015. https://doi.org/10.1126/science.aaa8415
  13. V. Chandola, A. Banerjee, and V. Kumar, "Anomaly detection: A survey," ACM Computing survey (CSUR), Vol. 41, No. 3, pp. 1-58, 2009.
  14. P. Malhotra, L. Vig, G. Shroff, and P. Agarwal, "Long short term memory networks for anomaly detection in time series," Proceedings, pp. 89, 2015.
  15. S. Hochreiter and J. Urgen Schmidhuber, "Long Short-Term Memory," Neural Computation, Vol. 9, No. 8, pp. 1735-1780, 1997. https://doi.org/10.1162/neco.1997.9.8.1735
  16. T. Olsson and A. Holst, "A Probabilistic Approach to Aggregating Anomalies for Unsupervised Anomaly Detection with Industrial Applications," in FLAIRS Conference, pp. 434-439, 2015.
  17. E. Marchi, F. Vesperini, F. Weninger, F. Eyben, S. Squartini, and B. Schuller, "Non-linear prediction with LSTM recurrent neural networks for acoustic novelty detection," in Neural Networks (IJCNN), 2015 International Joint Conference, pp. 1-7, 2015.
  18. L. Bontemps, J. McDermott, N.-A. Le-Khac, and others, "Collective anomaly detection based on long short-term memory recurrent neural networks," in International Conference on Future Data and Security Engineering, pp. 141-152, 2016.
  19. S. D. Anton, D. Fraunholz, C. Lipps, F. Pohl, M. Zimmermann, and H. D. Schotten, "Two decades of SCADA exploitation: A brief history," in Application, Information and Network Security (AINS), 2017 IEEE Conference, pp. 98-104, 2017.
  20. Understanding LSTM Network [Internet]. Available: http://colah.github.io/posts/2015-08-Understanding-LSTMs
  21. Xisom solution: http://www.xisom.com

Cited by

  1. Detection and Correction Method of Erroneous Data Using Quantile Pattern and LSTM vol.16, pp.4, 2018, https://doi.org/10.6109/jicce.2018.16.4.242
  2. Forecast of Bee Swarming using Data Fusion and LSTM vol.20, pp.1, 2018, https://doi.org/10.9728/dcs.2019.20.1.1
  3. 미세먼지 예측 성능 개선을 위한 CNN-LSTM 결합 방법 vol.24, pp.1, 2020, https://doi.org/10.6109/jkiice.2020.24.1.57
  4. Real time detection of acoustic anomalies in industrial processes using sequential autoencoders vol.38, pp.1, 2018, https://doi.org/10.1111/exsy.12564