References
- B. Chen, J. Wan, L. Shu, P. Li, M. Mukherjee, and B. Yin, "Smart Factory of Industry 4.0: Key Technologies, Application Case, and Challenges," IEEE Access, Vol. 6, pp. 6505-6519, 2017.
- T. Skripcak and P. Tanuska, "Utilisation of on-line machine learning for SCADA system alarms forecasting," Proceedings of 2013 Science and Information Conference, SAI 2013, pp. 477-484, 2013.
- S. Mohanty, M. Jagadeesh, and H. Srivatsa, " 'Big Data' warehouse, 'BI'implementations and analytics," Apress, 2013.
- I. Garitano, R. Uribeetxeberria and U. Zurutuza, "A review of SCADA Anomaly Detection System," Soft Computing Models in Industrial and Environmental Applications, 6th International Conference SOCO 2011, Vol. 87, 2011.
- M. Shafiee and M. Finkelstein, "An optimal age-based group maintenance policy for multi-unit degrading systems," Reliability Engineering \& System Safety, Vol. 134, pp. 230-238, 2015. https://doi.org/10.1016/j.ress.2014.09.016
- Kv, R. Satish, and N. P. Kavya, "Trend Analysis of E-Commerce Data using Hadoop Ecosystem," International Journal of Computer Applications, Vol. 147, No. 6, pp. 1-5, 2016.
- J. Dean and S. Ghemawat, "MapReduce: simplified data processing on large clusters," Communication of ACM, Vol. 51, No. 1, pp. 107-113, 2008. https://doi.org/10.1145/1327452.1327492
- Flume: http://flume.apache.org/
- Hive:https://hive.apache.org/
- Zeppelin: https://zeppelin.apache.org/docs/0.6.2/
- L. Zhou, S. Pan, J. Wang, and A. V. Vasilakos, "Machine learning on big data: Opportunities and challenges," Neurocomputing, Vol. 237, pp. 350-361, 2017. https://doi.org/10.1016/j.neucom.2017.01.026
- Jordan, I. Michael and M. M. Tom, "Machine learning: Trends, perspectives, and prospects," Science , Vol.349, No. 6245, pp. 255-260, 2015. https://doi.org/10.1126/science.aaa8415
- V. Chandola, A. Banerjee, and V. Kumar, "Anomaly detection: A survey," ACM Computing survey (CSUR), Vol. 41, No. 3, pp. 1-58, 2009.
- P. Malhotra, L. Vig, G. Shroff, and P. Agarwal, "Long short term memory networks for anomaly detection in time series," Proceedings, pp. 89, 2015.
- S. Hochreiter and J. Urgen Schmidhuber, "Long Short-Term Memory," Neural Computation, Vol. 9, No. 8, pp. 1735-1780, 1997. https://doi.org/10.1162/neco.1997.9.8.1735
- T. Olsson and A. Holst, "A Probabilistic Approach to Aggregating Anomalies for Unsupervised Anomaly Detection with Industrial Applications," in FLAIRS Conference, pp. 434-439, 2015.
- E. Marchi, F. Vesperini, F. Weninger, F. Eyben, S. Squartini, and B. Schuller, "Non-linear prediction with LSTM recurrent neural networks for acoustic novelty detection," in Neural Networks (IJCNN), 2015 International Joint Conference, pp. 1-7, 2015.
- L. Bontemps, J. McDermott, N.-A. Le-Khac, and others, "Collective anomaly detection based on long short-term memory recurrent neural networks," in International Conference on Future Data and Security Engineering, pp. 141-152, 2016.
- S. D. Anton, D. Fraunholz, C. Lipps, F. Pohl, M. Zimmermann, and H. D. Schotten, "Two decades of SCADA exploitation: A brief history," in Application, Information and Network Security (AINS), 2017 IEEE Conference, pp. 98-104, 2017.
- Understanding LSTM Network [Internet]. Available: http://colah.github.io/posts/2015-08-Understanding-LSTMs
- Xisom solution: http://www.xisom.com
Cited by
- Detection and Correction Method of Erroneous Data Using Quantile Pattern and LSTM vol.16, pp.4, 2018, https://doi.org/10.6109/jicce.2018.16.4.242
- Forecast of Bee Swarming using Data Fusion and LSTM vol.20, pp.1, 2018, https://doi.org/10.9728/dcs.2019.20.1.1
- 미세먼지 예측 성능 개선을 위한 CNN-LSTM 결합 방법 vol.24, pp.1, 2020, https://doi.org/10.6109/jkiice.2020.24.1.57
- Real time detection of acoustic anomalies in industrial processes using sequential autoencoders vol.38, pp.1, 2018, https://doi.org/10.1111/exsy.12564