DOI QR코드

DOI QR Code

A Study on the Image Quality According to the Change of Flip Angle in Flow-Related Enhancement Magnetic Resonance Angiography

유속증강 자기공명혈관조영술에서 숙임각 변화에 따른 영상의 질 연구

  • Goo, Eun-Hoe (Department of Radiological Science, Cheongju University)
  • 구은회 (청주대학교 방사선학과)
  • Received : 2018.02.22
  • Accepted : 2018.04.30
  • Published : 2018.04.30

Abstract

The purpose of this study was to investigate the optimal flip angle by measuring the SNR and CNR according to the angle of changes of the MRI technique using the Image J program. A total of 30 normal volunteers were assessed by using a 1.5T magnetic resonance imaging system (Philips, Medical System, Achieva). For the MRI angiography, we set the region of interest in four regions and evaluated the SNR and CNR. The statistical significance of SNR and CNR was calculated by one-way ANOVA using quantitative analysis at five different positions. The Bonferroni method was used for post-hoc analyzes. Statistical significance was determined by using ANOVA analysis at p<0.05 and Bonferroni method was used as a post-hoc analysis. The results of this study, the measurement values of ACA(SNR:$876.59{\pm}14.22$, CNR:$1999.7{\pm}12.5$), PCA(SNR:$863.48{\pm}13.29$, CNR:$1870.18{\pm}12.56$), ICA(SNR:$1116.87{\pm}08.34$, CNR:$2979.37{\pm}14.69$) and MCA(SNR:$848.66{\pm}15.25$, CNR:$2199.25{\pm}13.48$) were obtained with the high signal intensity at $25^{\circ}$(p<0.05). The values of a1, a2, a3, p1, p2, p3, m1, m2 and m3 were also the same (p<0.05). Post-hoc analysis results, There was a statistically significant difference (p=0.000) between $10^{\circ}$, $15^{\circ}$, $20^{\circ}$ on the $25^{\circ}$ reference for the flip angle, but no significant results were obtained with $30^{\circ}$(p<0.05). In concision, because the signal intensity decreased at $30^{\circ}$, this study revealed that the optimal flip angles were $25^{\circ}$ in cerebrovascular MR angiography.

본 연구는 Image J 프로그램을 사용하여 유속증가 자기공명영상기법의 숙임각 변화에 따른 SNR와 CNR을 측정하여 최적의 숙임각을 알아보기 위해 연구하였다. 총 30명의 정상인 지원자를 대상으로 1.5T 자기공명영상기기(Philips, Medical System, Achieva)를 이용하여 뇌동맥검사 후 평가를 실시하였다. 분석 방법으로 유속증가 자기공명 혈관 조영술에 대하여 4 부위에 관심영역을 설정하고 SNR와 CNR을 평가하였다. 5가지 숙임각에서의 정량적 분석으로 SNR과 CNR에 대한 통계적 유의성은 일원분산분석으로 계산되었으며, 사후 분석으로는 Bonferroni 법을 적용하였고, 통계에 사용된 프로그램은 SPSS 14.0을 이용하여 p 값을 0.05 이하일 때 유의성을 두었다. 본 실험에 대한 결과로서 전교통동맥(SNR:$876.59{\pm}14.22$, CNR:$1999.7{\pm}12.5$), 후교통동맥 (SNR: $863.48{\pm}13.29$, CNR:$1870.18{\pm}12.56$), ICA(SNR: $1116.87{\pm}08.34$, CNR:$2979.37{\pm}14.69$), 중대뇌동맥(SNR:$848.66{\pm}15.25$, CNR:$2199.25{\pm}13.48$)의 값으로 $25^{\circ}$에서 가장 높은 신호강도를 보였다(p<0.05). 작은 혈관 묘출로서 a1, a2, a3, p1, p2, p3, m1, m2, m3 값 또한 동일한 결과 이었다(p<0.05). 사후분석결과로, 숙임각에서 $25^{\circ}$ 기준으로 $10^{\circ}$, $15^{\circ}$, $20^{\circ}$에서 유의성 있는 결과를 얻었지만(p=0.000) $30^{\circ}$에서는 유의한 차이가 없었다(p>0.05). 결론적으로, 본 연구에서 $30^{\circ}$에서는 신호강도가 떨어지기 때문에 뇌혈관 자기공명조영술에서 최적의 숙임각은 $25^{\circ}$로 나타냈다.

Keywords

References

  1. E. N. Brown, M. Behrmann, "Controversy in statistical analysis of functional magnetic resonance imaging data," Proceedings of the National Academy of Sciences of the United States of America, Vol. 114, No. 17, E.3368-3369, 2017. https://doi.org/10.1073/pnas.1705513114
  2. J. S. Kim, H. J. Kim, S. H. Park, J. S. Lee, A. Y. Kim and H. K. Ha, “Computed tomography features and predictive findings of ruptured gastrointestinal stromal tumours,” European Radiology, Vol. 27, No. 1, pp. 2583-2590, 2017. https://doi.org/10.1007/s00330-016-4515-z
  3. B. Kereshi, K. S. Lee, B. Siewert and K. J. Mortele, "Clinical utility of magnetic resonance imaging in the evaluation of pregnant females with suspected acute appendicitis," Abdominal Radiolgy, pp. 1-10, 2017.
  4. M. Terceno, J. Serena, I. Bragado and Y. Silva, “Contrast extravasation through MRI precedes cerebral hemorrhage in a patient with eclampsi,” Neurological Sciences, Vol. 38, No. 1, pp. 693-694, 2017. https://doi.org/10.1007/s10072-016-2781-9
  5. J. W. Kang, H. J. Shin, K. C. Shin, E. Y. Chae, J. H. Choi and H. H. Kim, “Unenhanced magnetic resonance screening using fused diffusion-weighted imaging and maximum-intensity projection in patients with a personal history of breast cancer: role of fused DWI for postoperative screening,” Breast Cancer Research and Treatment, Vol. 165, No. 1, pp. 119-128, 2017. https://doi.org/10.1007/s10549-017-4322-5
  6. A. Singhal and J. K. Cure, “Absent Vascular Signal on Time-of-Flight Resonance Angiography Due to Recent Ferumoxytol Infusion,” Journal of Computer Assisted Tomography, Vol. 41, No. 2, pp. 334-335, 2017. https://doi.org/10.1097/RCT.0000000000000508
  7. A. D. Corte, C. F. M. de Souza, M. Anes, F. K. Maeda, A. Lokossou, L. M. Vedolin, M. G. Longo, M. M. Ferreira, S. G. P. Perrone, O. Baledent and R. Giugliani, "Correlation of CSF flow using phase-contrast MRI with ventriculomegaly and CSF opening pressure in mucopolysaccharidoses," Fluids Barriers of the CNS, Vol. 14, No. 23, pp 1-12, 2017. https://doi.org/10.1186/s12987-016-0048-8
  8. M. X. Dong, L. Hu, Y. J. Huang, X. M. Xu, Y. Liu and Y. D. Wei, "Cerebrovascular risk factors for patients with cerebral watershed infarction: A case-control study based on computed tomography angiography in a population from Southwest China," Medicine, Vol. 96, No. 28, DOI: 10.1097/MD.000000000007505, 2017.
  9. T. Wang, Y. Gong, Y. Shi, R. Hua and Q. Zhang, “Feasibility of dual-low scheme combined with iterative reconstruction technique in acute cerebral infarction volume CT whole brain perfusion imaging,” Experimental and Therapeutic Medicine, Vol. 14, No. 1, pp. 163-168, 2017. https://doi.org/10.3892/etm.2017.4451
  10. D. Rangelov, H. J. Muller and M. Zehetleitner, “Failure to pop out: Feature singletons do not capture attention under low signal-to-noise ratio conditions,” Journal of Experimental Psychology:General, Vol. 146, No. 5, pp. 651-671, 2017. https://doi.org/10.1037/xge0000284
  11. B. Bechara, C. A. MaMahan, W. S. Moore, H. Geha and F. B. Teixeira, “Contrast-to-noise ratio difference in small field of view cone beam computed tomography machines,” Journal of Science, Vol. 54, No. 3, pp. 227-232, 2012.
  12. L. Remonda, P. Senn, A. Barth, M. Amold, K. O. Lovblad and G. Schroth, “Contrast-enhanced 3D MR angiography of the carotid artery: conparison with conventional digital subtraction angiography,” American Journal of Neuroradiology, Vol. 23, No. 2, pp. 213-219, 2002.
  13. Y. J. Choi and D. Ch. Kweon, “Evaluation of TOF MR Angiography and Imaging for the Half Scan Factor of Cerebral Artery,” Journal of the Korean Magnetics Society, Vol. 26, No. 3, pp. 92-98, 2016. https://doi.org/10.4283/JKMS.2016.26.3.092
  14. F. X. Aymerich, C. Auger, P. Alcaide-Leon, D. Pareto, E. Huerga, J. F. Corral, R. Mitjana, J. Sastre-Garriga, X. Montalban and A. Rovira, "Comparison between gadolinium-enhanced 2D T1-weighted gradient-echo and spin-echo sequences in the detection of active multiple sclerosis lesions on 3.0T MRI," European Radiology, Vol.27, No.4, pp.1361-1368, 2017. https://doi.org/10.1007/s00330-016-4503-3
  15. J. Gaa, S. Weidauer, M. Requardt, H. Lanfermann, F. F. Zanella, “Comparison of intracranial 3D-ToF-MRA with and without parallel acquisition techniques at 1.5T and 3.0T: preliminary results,” Acta Radiologica, Vol. 45, No. 3, pp. 327-332, 2004. https://doi.org/10.1080/02841850410004229
  16. M. Garcia, R. Naraghi, T. Zumbrunn, J. Rösch, P. Hastreiter, "High-resolution 3D-constructive interference in steady-state MRI and 3D TOF MRA in neurovascular compression: a comparison between 3T and 1.5T," American Journal of Neuroradiology, Vol. 33, No. 7, pp.1251-1256, 2012. https://doi.org/10.3174/ajnr.A2974