DOI QR코드

DOI QR Code

Synthesis and Properties of Asymmetrical Zinc-phthalocyanines Containing a Siloxane End-group Linked with Alkyl Spacers of Different Lengths

알킬기로 연결된 실록산 말단기를 가지는 비대칭 아연-프탈로시아닌의 합성과 물성에 대한 연구

  • Hong, Sun-Mi (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Park, Jong S. (Department of Organic Material Science and Engineering, Pusan National University)
  • 홍선미 (부산대학교 유기소재시스템공학과) ;
  • 박종승 (부산대학교 유기소재시스템공학과)
  • Received : 2018.02.19
  • Accepted : 2018.04.04
  • Published : 2018.04.30

Abstract

Phthalocyanine (Pc), which has an electron-rich, aromatic structure, exhibits excellent optical properties as well as thermal and chemical stability. Numerous Pc derivatives, based on highly conjugated ring systems, have been proposed to facilitate efficient energy or electron transfer. They have been frequently adopted for suitable applications such as sensors and photosensitizers. In this study, we present the synthesis and properties of various asymmetrical zinc-phthalocyanine (ZnPc) derivatives having a siloxane end-group linked with alkyl chain spacers of different lengths. A ZnPc-immobilized ITO electrode was prepared by the direct attachment of the siloxane anchoring group to the oxide surface. The synthesized Pcs and the immobilized Pc surfaces were fully characterized by various techniques. The effect of the alkyl spacer length on the optical and electrochemical properties of the Pc-functionalized electrode is briefly discussed.

Keywords

References

  1. X. Zhang, M. Wang, H. He, and L. Mao, "Novel Donor [pi]- acceptor Conjugates-functionalized Zinc Phthalocyanines Application in Dye-sensitized Solar Cells", Asian J. Chem., 2014, 26, 2229-2234.
  2. K. Sakamoto and E. Ohno-Okumura, "Syntheses and Functional Properties of Phthalocyanines", Materials, 2009, 2, 1127-1179. https://doi.org/10.3390/ma2031127
  3. H. Wang, Y. Bu, W. Dai, K. Li, H. Wang, and X. Zuo, "Well-dispersed Cobalt Phthalocyanine Nanorods on Graphene for The Electrochemical Detection of Hydrogen Peroxide and Glucose Sensing", Sensor. Actuat. B-Chem., 2015, 216, 298-306. https://doi.org/10.1016/j.snb.2015.04.044
  4. R. Devasenathipathy, C. Karuppiah, S. M. Chen, S. Palanisamy, B.-S. Lou, M. Ajmal Ali, and F. M. A. Al-Hemaid, "A Sensitive and Selective Enzyme-free Amperometric Glucose Biosensor Using a Composite from Multi-walled Carbon Nanotubes and Cobalt Phthalocyanine", RSC Adv., 2015, 5, 26762-26768. https://doi.org/10.1039/C4RA17161F
  5. V. Mani, S. T. Huang, R. Devasenathipathy, and T. C. K. Yang, "Electropolymerization of Cobalt Tetraamino-phthalocyanine at Reduced Graphene Oxide for Electrochemical Determination of Cysteine and Hydrazine", RSC Adv., 2016, 6, 38463-38469. https://doi.org/10.1039/C6RA01851C
  6. F. Arduini, S. Guidone, A. Amine, G. Palleschi, and D. Moscone, "Acetylcholinesterase Biosensor Based on Self- assembled Monolayer-modified Gold-screen Printed Electrodes for Organophosphorus Insecticide Detection", Sensor. Actuat. B-Chem., 2013, 179, 201-208. https://doi.org/10.1016/j.snb.2012.10.016
  7. S. J. Kwon, H. Yang, K. Jo, and J. Kwak, "An Electrochemical Immunosensor Using p-aminophenol Redox Cycling by NADH on a Self-assembled Monolayer and Ferrocene- modified Au Electrodes", Analyst., 2008, 133, 1599-1604. https://doi.org/10.1039/b806302h
  8. N. K. Chaki and K. Vijayamohanan, "Self-assembled Monolayers as a Tunable Platform for Biosensor Applications", Biosens. Bioelectron., 2002, 17, 1-12. https://doi.org/10.1016/S0956-5663(01)00277-9
  9. F. Matemadombo and T. Nyokong, "Characterization of Self- assembled Monolayers of Iron and Cobalt Octaalkylthio- substituted Phthalocyanines and Their Use in Nitrite Electrocatalytic Oxidation", Electrochim. Acta., 2007, 52, 6856-6864. https://doi.org/10.1016/j.electacta.2007.05.002
  10. T. R. E. Simpson, D. A. Russell, I. Chambrier, M. J. Cook, A. B. Horn, and S. C. Thorpe, "Formation and Characterisation of a Self-assembled Phthalocyanine Monolayer Suitable for Gas Sensing", Sensor. Actuat. B-Chem., 1995, 29, 353-357. https://doi.org/10.1016/0925-4005(95)01706-2
  11. C. Linares-Flores, F. Mendizabal, R. Arratia-Perez, N. Inostroza, and C. Orellana, "Substituents Role in Zinc Phthalocyanine Derivatives Used Asdye-sensitized Solar Cells. A Theoretical Study Using Density Functional Theory", Chem. Phys. Lett., 2015, 639, 172-177. https://doi.org/10.1016/j.cplett.2015.09.025
  12. Y. Jiang, T. Kusakabe, K. Takahashi, and K. Kato, "A Cyclization-carbonylation-cyclization Coupling Reaction of (ortho-alkynyl phenyl) (methoxymethyl) Sulfides with the Palladium(II)-bisoxazoline Catalyst", Org. Biomol. Chem., 2014, 12, 3380-3385. https://doi.org/10.1039/C4OB00299G
  13. E. M. Maya, P. Haisch, P. Vazquez, T. Torres, K. Goyal, R. Sehgal, I. K. Maurya, R. Tewari, D. Choquesillo-Lazarte, S. Sahoo, and N. Kaur, "Synthesis and Characterization of Tetraethynylphthalocyanines", Tetrahedron, 1998, 54, 4397-4404. https://doi.org/10.1016/S0040-4020(98)00153-7
  14. G. Singh, A. Arora, S. S. Mangat, S. Rani, and H. Kaur, "Design, Synthesis and Biological Evaluation of Chalconyl Blended Triazole Allied Organosilatranes as Giardicidal and Trichomonacidal Agents", Eur. J. Med. Chem., 2016, 108, 287-300. https://doi.org/10.1016/j.ejmech.2015.11.029
  15. Q. Zhou, Z. Wan, X. Yuan, and J. Luo, "A New Magnetic Nanoparticle-supported Schiff Base Complex of Manganese: An Efficient and Recyclable Catalyst for Selective Oxidation of Alcohols", Appl. Organomet. Chem., 2016, 30, 215-220. https://doi.org/10.1002/aoc.3419
  16. G. Zhang, Y. Wang, X. Wen, C. Ding, and Y. Li, "Dual- functional Click-triazole: A Metal Chelator and Immobilization Linker for the Construction of Heterogeneous Palladium Catalyst and Its Application for Aerobic Oxidation of Alcohols", Chem. Commun., 2012, 48, 2979-2981. https://doi.org/10.1039/c2cc18023e
  17. H. Dincer, H. Mert, B. N. Sen, A. Dag, and S. Bayraktar, "Synthesis and Characterization of Novel Tetra Terminal Alkynyl-substituted Phthalocyanines and Their Star Polymers via Click Reaction", Dyes Pigm., 2013, 98, 246-254. https://doi.org/10.1016/j.dyepig.2013.02.014
  18. B. N. Sen, H. Mert, H. Dincer, and A. Koca, "Synthesis and Characterization of Terminalalkynyl-substituted Unsymmetrical Zinc Phthalocyanine Conjugated with Well-defined Polymers", Dyes Pigm., 2014, 100, 1-10. https://doi.org/10.1016/j.dyepig.2013.07.018
  19. A. T. Dickschat, F. Behrends, M. Bühner, J. Ren, M. Weiss, H. Eckert, and A. Studer "Preparation of Bifunctional Mesoporous Silica Nanoparticles by Orthogonal Click Reactions and Their Application in Cooperative Catalysis", Chem. Eur. J., 2012, 18, 16689-16697. https://doi.org/10.1002/chem.201200499
  20. G. Giancane, M. R. Guascito, C. Malitesta, E. Mazzotta, R. A. Picca, and L. Valli, "QCM Sensors for Aqueous Phenols Based on Active Layers Constituted by Tetrapyrrolic Macrocycle Langmuir Films", J. Porphyrins Phthalocyanines, 2009, 13, 1129-1139. https://doi.org/10.1142/S1088424609001467
  21. X. Huang, Y. Liu, S. Wang, S. Zhou, and D. Zhu, "Synthesis and Self-assembly of 2,9,16-tri(tert-butyl)-23-(10-mercaptodecyloxy) Phthalocyanine and the Application of Its Self-assembled Monolayers in Organic Light-emitting Diodes", Chem. Eur. J., 2002, 8, 4179-4184. https://doi.org/10.1002/1521-3765(20020916)8:18<4179::AID-CHEM4179>3.0.CO;2-L
  22. K. Ozoemena and T. Nyokong, "Voltammetric Characterization of the Self-assembled Monolayer (SAM) of Octabutylthioph- thalocyaninatoiron(II): a Potential Electrochemical Sensor", Electrochim. Acta, 2002, 47, 4035-4043. https://doi.org/10.1016/S0013-4686(02)00362-6
  23. R. Devasenathipathy, C. Karuppiah, S.-M. Chen, S. Palanisamy, B.-S. Lou, M. A. Alic, and F. M. A. Al-Hemaidc, "A Sensitive and Selective Enzyme-free Amperometric Glucose Biosensor Using a Composite from Multi-walled Carbon Nanotubes and Cobalt Phthalocyanine", RSC Adv., 2015, 5, 26762-26768. https://doi.org/10.1039/C4RA17161F
  24. B. R. Kozub and R. G. Compton, "Voltammetric Studies of the Redox Mediator, Cobalt Phthalocyanine, with Regard to Its Claimed Electrocatalytic Properties", Sensor. Actuat. B-Chem., 2010, 147, 350-358. https://doi.org/10.1016/j.snb.2010.02.062
  25. A. Gupta, J. H. Lee, J. H. Seo, S. G. Lee, and J. S. Park, "Electronrich $\pi$-extended Phthalocyanine-thiophene-phthalocyanine Triad for the Sensitive and Selective Detection of Picric Acid", RSC Adv., 2015, 5, 73989-73992. https://doi.org/10.1039/C5RA13889B
  26. T. H. Liu, L. P. Ding, G. He, Y. Yang, W. L. Wang, and Y. Fang, "Photochemical Stabilization of Terthiophene and Its Utilization as a New Sensing Element in the Fabrication of Monolayer-chemistry-based Fluorescent Sensing Films", ACS Appl. Mater. Interfaces, 2011, 3, 1245-1253. https://doi.org/10.1021/am2000592
  27. H. P. Martinez, C. D. Grant, J. G. Reynolds, and W. C. Trogler, "Silica Anchored Fluorescent Organosilicon Polymers for Explosives Separation and Detection", J. Mater. Chem., 2012, 22, 2908-2914. https://doi.org/10.1039/C2JM15214B