References
- Fleming AJ. 1997. Induction of leaf primordia by the cell wall protein expansin. Science 276: 1415-1418. https://doi.org/10.1126/science.276.5317.1415
- Cho HT, Cosgrove DJ. 2002. Regulation of root hair initiation and expansin gene expression in Arabidopsis. Plant Cell 14: 3237-3253. https://doi.org/10.1105/tpc.006437
- Kwasniewski M, Szarejko I. 2006. Molecular cloning and characterization of beta-expansin gene related to root hair formation in barley. Plant Physiol. 141: 1149-1158. https://doi.org/10.1104/pp.106.078626
- McQueen-Mason SJ, Cosgrove DJ. 1995. Expansin mode of action on cell walls. Analysis of wall hydrolysis, stress relaxation, and binding. Plant Physiol. 107: 87-100. https://doi.org/10.1104/pp.107.1.87
- Rayle DL, Cleland RE. 1992. The acid growth theory of auxin-induced cell elongation is alive and well. Plant Physiol. 99: 1271-1274. https://doi.org/10.1104/pp.99.4.1271
- Saloheimo M, Paloheimo M, Hakola S, Pere J, Swanson B, Nyyssönen E, et al. 2002. Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. Eur. J. Biochem. 269: 4202-4211. https://doi.org/10.1046/j.1432-1033.2002.03095.x
- Sampedro J, Cosgrove DJ. 2005. The expansin superfamily. Genome Biol. 6: 242. https://doi.org/10.1186/gb-2005-6-12-242
- Nikolaidis N, Doran N, Cosgrove DJ. 2014. Plant expansins in bacteria and fungi: evolution by horizontal gene transfer and independent domain fusion. Mol. Biol. Evol. 31: 376-386. https://doi.org/10.1093/molbev/mst206
- Georgelis N, Nikolaidis N, Cosgrove DJ. 2014. Biochemical analysis of expansin-like proteins from microbes. Carbohydr. Polym. 100: 17-23. https://doi.org/10.1016/j.carbpol.2013.04.094
- Andberg M, Penttila M, Saloheimo M. 2015. Swollenin from Trichoderma reesei exhibits hydrolytic activity against cellulosic substrates with features of both endoglucanases and cellobiohydrolases. Bioresour. Technol. 181: 105-113. https://doi.org/10.1016/j.biortech.2015.01.024
- Tovar-Herrera OE, Batista-Garcia RA, Sanchez-Carbente Mdel R, Iracheta-Cardenas MM, Arevalo-Nino K, Folch-Mallol JL. 2015. A novel expansin protein from the white-rot fungus Schizophyllum commune. PLoS One 10: e0122296. https://doi.org/10.1371/journal.pone.0122296
- Eibinger M, Sigl K, Sattelkow J, Ganner T, Ramoni J, Seiboth B, et al. 2016. Functional characterization of the native swollenin from Trichoderma reesei: study of its possible role as C1 factor of enzymatic lignocellulose conversion. Biotechnol. Biofuels. 9: 178. https://doi.org/10.1186/s13068-016-0590-2
- Kerff F, Amoros A, Herman R, Sauvage E, Petrella S, Filee P, et al. 2008. Crystal structure and activity of Bacillus subtilis YoaJ (EXLX1), a bacterial expansin that promotes root colonization. Proc. Natl. Acad. Sci. USA 105: 16876-16881. https://doi.org/10.1073/pnas.0809382105
- Kim IJ, Ko HJ, Kim TW, Nam KH, Choi IG, Kim KH. 2013. Binding characteristics of a bacterial expansin (BsEXLX1) for various types of pretreated lignocellulose. Appl. Biochem. Biotechnol. 97: 5381-5388.
- Lee HJ, Kim IJ, Kim JF, Choi IG, Kim KH. 2013. An expansin from the marine bacterium Hahella chejuensis acts synergistically with xylanase and enhances xylan hydrolysis. Bioresour. Technol. 149: 516-519. https://doi.org/10.1016/j.biortech.2013.09.086
- Bunterngsook B, Eurwilaichitr L, Thamchaipenet A, Champreda V. 2015. Binding characteristics and synergistic effects of bacterial expansins on cellulosic and hemicellulosic substrates. Bioresour. Technol. 176: 129-135. https://doi.org/10.1016/j.biortech.2014.11.042
- Wang M, Cai J, Huang L, Lv Z, Zhang Y, Xu Z. 2010. High-level expression and efficient purification of bioactive swollenin in Aspergillus oryzae. Appl. Biochem. Biotechnol. 162: 2027-2036. https://doi.org/10.1007/s12010-010-8978-0
- Jager G, Girfoglio M, Dollo F, Rinaldi R, Bongard H, Commandeur U, et al. 2011. How recombinant swollenin from Kluyveromyces lactis affects cellulosic substrates and accelerates their hydrolysis. Biotechnol. Biofuels. 4: 33. https://doi.org/10.1186/1754-6834-4-33
- Zhou QX, Lv XX, Zhang X, Meng XF, Chen GJ, Liu WF. 2011. Evaluation of swollenin from Trichoderma pseudokoningii as a potential synergistic factor in the enzymatic hydrolysis of cellulose with low cellulase loadings. World J. Microbiol. Biotechnol. 27: 1905-1910. https://doi.org/10.1007/s11274-011-0650-5
- Gourlay K, Hu J, Arantes V, Andberg M, Saloheimo M, Penttila M, et al. 2013. Swollenin aids in the amorphogenesis step during the enzymatic hydrolysis of pretreated biomass. Bioresour. Technol. 142: 498-503. https://doi.org/10.1016/j.biortech.2013.05.053
- Kang K, Wang S, Lai G, Liu G, Xing M. 2013. Characterization of a novel swollenin from Penicillium oxalicum in facilitating enzymatic saccharification of cellulose. BMC Biotechnol. 13: 42. https://doi.org/10.1186/1472-6750-13-42
- Darley CP, Li Y, Schaap P, McQueen-Mason SJ. 2003. Expression of a family of expansin-like proteins during the development of Dictyostelium discoideum. FEBS Lett. 546: 416-418. https://doi.org/10.1016/S0014-5793(03)00598-2
- Ogasawara S, Shimada N, Kawata T. 2009. Role of an expansin-like molecule in Dictyostelium morphogenesis and regulation of its gene expression by the signal transducer and activator of transcription protein Dd-STATa. Dev. Growth Differ. 51: 109-122. https://doi.org/10.1111/j.1440-169X.2009.01086.x
- Kawata T, Nakamura Y, Saga Y, Iwade Y, Ishikawa M, Sakurai A, et al. 2015. Implications of expansin-like 3 gene in Dictyostelium morphogenesis. Springerplus 4: 190. https://doi.org/10.1186/s40064-015-0964-0
- Lin H, Zhang Z, Zhang MQ, Ma B, Li M. 2008. ZOOM! Zillions of oligos mapped. Bioinformatics 24: 2431-2437. https://doi.org/10.1093/bioinformatics/btn416
- Fang H, Zhang W, Niu X, Liu Z, Lu C, Wei H, et al. 2014. Stipe wall extension of Flammulina velutipes could be induced by an expansin-like protein from Helix aspersa. Fungal Biol. 118: 1-11. https://doi.org/10.1016/j.funbio.2013.10.003
- Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25: 402-408. https://doi.org/10.1006/meth.2001.1262
- Darley CP, Forrester AM, McQueen-Mason SJ. 2001. The molecular basis of plant cell wall extension. Plant Mol. Biol. 47: 179-195. https://doi.org/10.1023/A:1010687600670
- Georgelis N, Nikolaidis N, Cosgrove DJ. 2014. Biochemical analysis of expansin-like proteins from microbes. Carbohydr. Polym. 100: 17-23. https://doi.org/10.1016/j.carbpol.2013.04.094