References
- Kunau WH, Dommes V, Schulz H. 1995. Beta-oxidation of fatty acids in mitochondria, peroxisomes, and bacteria: a century of continued progress. Prog. Lipid Res. 34: 267-342. https://doi.org/10.1016/0163-7827(95)00011-9
- Hiltunen JK, Qin Y. 2000. Beta-oxidation - strategies for the metabolism of a wide variety of acyl-CoA esters. Biochim. Biophys. Acta 1484: 117-128. https://doi.org/10.1016/S1388-1981(00)00013-5
- Poirier Y, Antonenkov VD, Glumoff T, Hiltunen JK. 2006. Peroxisomal beta-oxidation - a metabolic pathway with multiple functions. Biochim. Biophys. Acta 1763: 1413-1426. https://doi.org/10.1016/j.bbamcr.2006.08.034
-
Hashimoto T. 1999. Peroxisomal
$\beta$ -oxidation enzymes. Neurochem. Res. 24: 551-563. https://doi.org/10.1023/A:1022540030918 - Nakajima Y, Miyahara I, Hirotsu K, Nishina Y, Shiga K, Setoyama C, et al. 2002. Three-dimensional structure of the flavoenzyme acyl-CoA oxidase-II from rat liver, the peroxisomal counterpart of mitochondrial acyl-CoA dehydrogenase. J. Biochem. 131: 365-374. https://doi.org/10.1093/oxfordjournals.jbchem.a003111
- Reiser K, Davis MA, Hynes MJ. 2010. AoxA is a major peroxisomal long chain fatty acyl-CoA oxidase required for beta-oxidation in A. nidulans. Curr. Genet. 56: 139-150. https://doi.org/10.1007/s00294-009-0286-2
- Shimizu S, Yasui K, Tani Y, Yamada H. 1979. Acyl-CoA oxidase from Candida tropicalis. Biochem. Biophys. Res. Commun. 91: 108-113. https://doi.org/10.1016/0006-291X(79)90589-8
- Stanway CA, Gibbs JM, Berardi E. 1995. Expression of the FOX1 gene of Saccharomyces cerevisiae is regulated by carbon source, but not by the known glucose repression genes. Curr. Genet. 27: 404-408. https://doi.org/10.1007/BF00311208
- Zhang X, Feng L, Chinta S, Singh P, Wang Y, Nunnery JK, et al. 2015. Acyl-CoA oxidase complexes control the chemical message produced by Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 112: 3955-3960. https://doi.org/10.1073/pnas.1423951112
- Hayashi H, De Bellis L, Yamaguchi K, Kato A, Hayashi M, Nishimura M. 1998. Molecular characterization of a glyoxysomal long chain acyl-CoA oxidase that is synthesized as a precursor of higher molecular mass in pumpkin. J. Biol. Chem. 273: 8301-8307. https://doi.org/10.1074/jbc.273.14.8301
- Hayashi H, De Bellis L, Ciurli A, Kondo M, Hayashi M, Nishimura M. 1999. A novel acyl-CoA oxidase that can oxidize short-chain acyl-CoA in plant peroxisomes. J. Biol. Chem. 274: 12715-12721. https://doi.org/10.1074/jbc.274.18.12715
- Hooks MA, Kellas F, Graham IA. 1999. Long-chain acyl-CoA oxidases of Arabidopsis. Plant J. Cell Mol. Biol. 20: 1-13. https://doi.org/10.1046/j.1365-313X.1999.00559.x
- Eastmond PJ, Hooks MA, Williams D, Lange P, Bechtold N, Sarrobert C, et al. 2000. Promoter trapping of a novel medium-chain acyl-CoA oxidase, which is induced transcriptionally during Arabidopsis seed germination. J. Biol. Chem. 275: 34375-34381. https://doi.org/10.1074/jbc.M004945200
- Froman BE, Edwards PC, Bursch AG, Dehesh K. 2000. ACX3, a novel medium-chain acyl-coenzyme A oxidase from Arabidopsis. Plant Physiol. 123: 733-742. https://doi.org/10.1104/pp.123.2.733
- Pedersen L, Henriksen A. 2005. Acyl-CoA oxidase 1 from Arabidopsis thaliana. Structure of a key enzyme in plant lipid metabolism. J. Mol. Biol. 345: 487-500. https://doi.org/10.1016/j.jmb.2004.10.062
- Powers RA, Rife CL, Schilmiller AL, Howe GA, Garavito RM. 2006. Structure determination and analysis of acyl-CoA oxidase (ACX1) from tomato. Acta Crystallogr. Section D Biol. Crystallogr. 62: 683-686. https://doi.org/10.1107/S0907444906014107
- Arent S, Pye VE, Henriksen A. 2008. Structure and function of plant acyl-CoA oxidases. Plant Physiol. Biochem. 46: 292-301. https://doi.org/10.1016/j.plaphy.2007.12.014
- Agarwal AK, Qi Y, Bhat DG, Woerner BM, Brown SM. 2001. Gene isolation and characterization of two acyl CoA oxidases from soybean with broad substrate specificities and enhanced expression in the growing seedling axis. Plant Mol. Biol. 47: 519-531. https://doi.org/10.1023/A:1011825114301
- Van Veldhoven PP, Vanhove G, Assselberghs S, Eyssen HJ, Mannaerts GP. 1992. Substrate specificities of rat liver peroxisomal acyl-CoA oxidases: palmitoyl-CoA oxidase (inducible acyl-CoA oxidase), pristanoyl-CoA oxidase (non-inducible acyl-CoA oxidase), and trihydroxycoprostanoyl-CoA oxidase. J. Biol. Chem. 267: 20065-20074.
- Tokuoka K, Nakajima Y, Hirotsu K, Miyahara I, Nishina Y, Shiga K, et al. 2006. Three-dimensional structure of rat-liver acyl-CoA oxidase in complex with a fatty acid: insights into substrate-recognition and reactivity toward molecular oxygen. J. Biochem. 139: 789-795. https://doi.org/10.1093/jb/mvj088
- Oaxaca-Castillo D, Andreoletti P, Vluggens A, Yu S, van Veldhoven PP, Reddy JK, et al. 2007. Biochemical characterization of two functional human liver acyl-CoA oxidase isoforms 1a and 1b encoded by a single gene. Biochem. Biophys. Res. Commun. 360: 314-319. https://doi.org/10.1016/j.bbrc.2007.06.059
- Chen L, Zhang J, Chen WN. 2014. Engineering the Saccharomyces cerevisiae beta-oxidation pathway to increase medium chain fatty acid production as potential biofuel. PLoS One 9: e84853. https://doi.org/10.1371/journal.pone.0084853
- Picataggio S, Deanda K, Mielenz J. 1991. Determination of Candida tropicalis acyl coenzyme A oxidase isozyme function by sequential gene disruption. Mol. Cell. Biol. 11: 4333-4339. https://doi.org/10.1128/MCB.11.9.4333
- Zhang X, Li K, Jones RA, Bruner SD, Butcher RA. 2016. Structural characterization of acyl-CoA oxidases reveals a direct link between pheromone biosynthesis and metabolic state in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 113: 10055-10060. https://doi.org/10.1073/pnas.1608262113
- Hooks MA, Bode K, Couee I. 1996. Higher-plant medium- and short-chain acyl-CoA oxidases: identification, purification and characterization of two novel enzymes of eukaryotic peroxisomal beta-oxidation. Biochem. J. 320: 607-614. https://doi.org/10.1042/bj3200607
- Goncalves FA, Colen G, Takahashi JA. 2014. Yarrowia lipolytica and its multiple applications in the biotechnological industry. ScientificWorldJournal 2014: 476207.
-
Haddouche R, Poirier Y, Delessert S, Sabirova J, Pagot Y, Neuveglise C, et al. 2011. Engineering polyhydroxyalkanoate content and monomer composition in the oleaginous yeast Yarrowia lipolytica by modifying the
$\beta$ -oxidation multifunctional protein. Appl. Microbiol. Biotechnol. 91: 1327-1340. https://doi.org/10.1007/s00253-011-3331-2 - Wache Y, Aguedo M, Choquet A, Gatfield IL, Nicaud JM, Belin JM. 2001. Role of beta-oxidation enzymes in gamma-decalactone production by the yeast Yarrowia lipolytica. Appl. Environ. Microbiol. 67: 5700-5704. https://doi.org/10.1128/AEM.67.12.5700-5704.2001
- Beopoulos A, Chardot T, Nicaud JM. 2009. Yarrowia lipolytica: a model and a tool to understand the mechanisms implicated in lipid accumulation. Biochimie 91: 692-696. https://doi.org/10.1016/j.biochi.2009.02.004
- Beopoulos A, Mrozova Z, Thevenieau F, Le Dall MT, Hapala I, Papanikolaou S, et al. 2008. Control of lipid accumulation in the yeast Yarrowia lipolytica. Appl. Environ. Microbiol. 74: 7779-7789. https://doi.org/10.1128/AEM.01412-08
- Mlickova K, Roux E, Athenstaedt K, d'Andrea S, Daum G, Chardot T, et al. 2004. Lipid accumulation, lipid body formation, and acyl coenzyme A oxidases of the yeast Yarrowia lipolytica. Appl. Environ. Microbiol. 70: 3918-3924. https://doi.org/10.1128/AEM.70.7.3918-3924.2004
- Thevenieau F. 2006. Metabolic engineering of the yeast Yarrowia lipolytica for the production of long-chain dicarboxylic acids from renewable oil feedstock. PhD thesis. Institut National Agronomique Paris-Grignon.
- Mli K, Luo Y, d'Andrea S, Pec P, Chardot T, Nicaud J-M. 2004. Acyl-CoA oxidase, a key step for lipid accumulation in the yeast Yarrowia lipolytica. J. Mol. Catal. B Enzym. 28: 81-85. https://doi.org/10.1016/j.molcatb.2004.01.007
- Luo YS, Nicaud JM, Van Veldhoven PP, Chardot T. 2002. The acyl-CoA oxidases from the yeast Yarrowia lipolytica: characterization of Aox2p. Arch. Biochem. Biophys. 407: 32-38. https://doi.org/10.1016/S0003-9861(02)00466-6
- Luo YS, Wang HJ, Gopalan KV, Srivastava DK, Nicaud JM, Chardot T. 2000. Purification and characterization of the recombinant form of acyl CoA oxidase 3 from the yeast Yarrowia lipolytica. Arch. Biochem. Biophys. 384: 1-8. https://doi.org/10.1006/abbi.2000.2079
- Wang H, Le Clainche A, Le Dall MT, Wache Y, Pagot Y, Belin JM, et al. 1998. Cloning and characterization of the peroxisomal acyl CoA oxidase ACO3 gene from the alkane-utilizing yeast Yarrowia lipolytica. Yeast 14: 1373-1386. https://doi.org/10.1002/(SICI)1097-0061(199811)14:15<1373::AID-YEA332>3.0.CO;2-1
- Wang H, Le Dall MT, Wache Y, Laroche C, Belin JM, Nicaud JM. 1999. Cloning, sequencing, and characterization of five genes coding for acyl-CoA oxidase isozymes in the yeast Yarrowia lipolytica. Cell Biochem. Biophys. 31: 165-174. https://doi.org/10.1007/BF02738170
- Thevenieau F, Le Dall MT, Nthangeni B, Mauersberger S, Marchal R, Nicaud JM. 2007. Characterization of Yarrowia lipolytica mutants affected in hydrophobic substrate utilization. Fungal Genet. Biol. 44: 531-542. https://doi.org/10.1016/j.fgb.2006.09.001
- Park S-Y, Ha S-C, Kim Y-G. 2017. The protein crystallography beamlines at the Pohang light source II. Biodesign 5: 30-34.
- Otwinowski Z, Minor W. 1997. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276: 307-326.
- Matthews BW. 1968. Solvent content of protein crystals. J. Mol. Biol. 33: 491-497. https://doi.org/10.1016/0022-2836(68)90205-2
- Vagin A, Teplyakov A. 2010. Molecular replacement with MOLREP. Acta Crystallogr. D Biol. Crystallogr. 66: 22-25.
- Emsley P, Cowtan K. 2004. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60: 2126-2132. https://doi.org/10.1107/S0907444904019158
- Murshudov GN, Skubak P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, et al. 2011. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 67: 355-367. https://doi.org/10.1107/S0907444911001314
- Krissinel E, Henrick K. 2007. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372: 774-797. https://doi.org/10.1016/j.jmb.2007.05.022
- Chovancova E, Pavelka A, Benes P, Strnad O, Brezovsky J, Kozlikova B, et al. 2012. CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput. Biol. 8: e1002708. https://doi.org/10.1371/journal.pcbi.1002708
Cited by
- Production of adipic acid by short- and long-chain fatty acid acyl-CoA oxidase engineered in yeast Candida tropicalis vol.43, pp.1, 2018, https://doi.org/10.1007/s00449-019-02202-w
- The Peroxisomal Targeting Signal 3 (PTS3) of the Budding Yeast Acyl-CoA Oxidase Is a Signal Patch vol.8, pp.None, 2018, https://doi.org/10.3389/fcell.2020.00198
- Functional Characterization of GhACX3 Gene Reveals Its Significant Role in Enhancing Drought and Salt Stress Tolerance in Cotton vol.12, pp.None, 2018, https://doi.org/10.3389/fpls.2021.658755