DOI QR코드

DOI QR Code

Crystal Structure of Acyl-CoA Oxidase 3 from Yarrowia lipolytica with Specificity for Short-Chain Acyl-CoA

  • Kim, Sangwoo (School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University) ;
  • Kim, Kyung-Jin (School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University)
  • Received : 2017.11.17
  • Accepted : 2017.01.30
  • Published : 2018.04.28

Abstract

Acyl-CoA oxidases (ACOXs) play important roles in lipid metabolism, including peroxisomal fatty acid ${\beta}$-oxidation by the conversion of acyl-CoAs to 2-trans-enoyl-CoAs. The yeast Yarrowia lipolytica can utilize fatty acids as a carbon source and thus has extensive biotechnological applications. The crystal structure of ACOX3 from Y. lipolytica (YlACOX3) was determined at a resolution of $2.5{\AA}$. It contained two molecules per asymmetric unit, and the monomeric structure was folded into four domains; $N{\alpha}$, $N{\beta}$, $C{\alpha}1$, and $C{\alpha}2$ domains. The cofactor flavin adenine dinucleotide was bound in the dimer interface. The substrate-binding pocket was located near the cofactor, and formed at the interface between the $N{\alpha}$, $N{\beta}$, and $C{\alpha}1$ domains. Comparisons with other ACOX structures provided structural insights into how YlACOX has a substrate preference for short-chain acyl-CoA. In addition, the structure of YlACOX3 was compared with those of medium- and long-chain ACOXs, and the structural basis for their differences in substrate specificity was discussed.

Keywords

References

  1. Kunau WH, Dommes V, Schulz H. 1995. Beta-oxidation of fatty acids in mitochondria, peroxisomes, and bacteria: a century of continued progress. Prog. Lipid Res. 34: 267-342. https://doi.org/10.1016/0163-7827(95)00011-9
  2. Hiltunen JK, Qin Y. 2000. Beta-oxidation - strategies for the metabolism of a wide variety of acyl-CoA esters. Biochim. Biophys. Acta 1484: 117-128. https://doi.org/10.1016/S1388-1981(00)00013-5
  3. Poirier Y, Antonenkov VD, Glumoff T, Hiltunen JK. 2006. Peroxisomal beta-oxidation - a metabolic pathway with multiple functions. Biochim. Biophys. Acta 1763: 1413-1426. https://doi.org/10.1016/j.bbamcr.2006.08.034
  4. Hashimoto T. 1999. Peroxisomal $\beta$-oxidation enzymes. Neurochem. Res. 24: 551-563. https://doi.org/10.1023/A:1022540030918
  5. Nakajima Y, Miyahara I, Hirotsu K, Nishina Y, Shiga K, Setoyama C, et al. 2002. Three-dimensional structure of the flavoenzyme acyl-CoA oxidase-II from rat liver, the peroxisomal counterpart of mitochondrial acyl-CoA dehydrogenase. J. Biochem. 131: 365-374. https://doi.org/10.1093/oxfordjournals.jbchem.a003111
  6. Reiser K, Davis MA, Hynes MJ. 2010. AoxA is a major peroxisomal long chain fatty acyl-CoA oxidase required for beta-oxidation in A. nidulans. Curr. Genet. 56: 139-150. https://doi.org/10.1007/s00294-009-0286-2
  7. Shimizu S, Yasui K, Tani Y, Yamada H. 1979. Acyl-CoA oxidase from Candida tropicalis. Biochem. Biophys. Res. Commun. 91: 108-113. https://doi.org/10.1016/0006-291X(79)90589-8
  8. Stanway CA, Gibbs JM, Berardi E. 1995. Expression of the FOX1 gene of Saccharomyces cerevisiae is regulated by carbon source, but not by the known glucose repression genes. Curr. Genet. 27: 404-408. https://doi.org/10.1007/BF00311208
  9. Zhang X, Feng L, Chinta S, Singh P, Wang Y, Nunnery JK, et al. 2015. Acyl-CoA oxidase complexes control the chemical message produced by Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 112: 3955-3960. https://doi.org/10.1073/pnas.1423951112
  10. Hayashi H, De Bellis L, Yamaguchi K, Kato A, Hayashi M, Nishimura M. 1998. Molecular characterization of a glyoxysomal long chain acyl-CoA oxidase that is synthesized as a precursor of higher molecular mass in pumpkin. J. Biol. Chem. 273: 8301-8307. https://doi.org/10.1074/jbc.273.14.8301
  11. Hayashi H, De Bellis L, Ciurli A, Kondo M, Hayashi M, Nishimura M. 1999. A novel acyl-CoA oxidase that can oxidize short-chain acyl-CoA in plant peroxisomes. J. Biol. Chem. 274: 12715-12721. https://doi.org/10.1074/jbc.274.18.12715
  12. Hooks MA, Kellas F, Graham IA. 1999. Long-chain acyl-CoA oxidases of Arabidopsis. Plant J. Cell Mol. Biol. 20: 1-13. https://doi.org/10.1046/j.1365-313X.1999.00559.x
  13. Eastmond PJ, Hooks MA, Williams D, Lange P, Bechtold N, Sarrobert C, et al. 2000. Promoter trapping of a novel medium-chain acyl-CoA oxidase, which is induced transcriptionally during Arabidopsis seed germination. J. Biol. Chem. 275: 34375-34381. https://doi.org/10.1074/jbc.M004945200
  14. Froman BE, Edwards PC, Bursch AG, Dehesh K. 2000. ACX3, a novel medium-chain acyl-coenzyme A oxidase from Arabidopsis. Plant Physiol. 123: 733-742. https://doi.org/10.1104/pp.123.2.733
  15. Pedersen L, Henriksen A. 2005. Acyl-CoA oxidase 1 from Arabidopsis thaliana. Structure of a key enzyme in plant lipid metabolism. J. Mol. Biol. 345: 487-500. https://doi.org/10.1016/j.jmb.2004.10.062
  16. Powers RA, Rife CL, Schilmiller AL, Howe GA, Garavito RM. 2006. Structure determination and analysis of acyl-CoA oxidase (ACX1) from tomato. Acta Crystallogr. Section D Biol. Crystallogr. 62: 683-686. https://doi.org/10.1107/S0907444906014107
  17. Arent S, Pye VE, Henriksen A. 2008. Structure and function of plant acyl-CoA oxidases. Plant Physiol. Biochem. 46: 292-301. https://doi.org/10.1016/j.plaphy.2007.12.014
  18. Agarwal AK, Qi Y, Bhat DG, Woerner BM, Brown SM. 2001. Gene isolation and characterization of two acyl CoA oxidases from soybean with broad substrate specificities and enhanced expression in the growing seedling axis. Plant Mol. Biol. 47: 519-531. https://doi.org/10.1023/A:1011825114301
  19. Van Veldhoven PP, Vanhove G, Assselberghs S, Eyssen HJ, Mannaerts GP. 1992. Substrate specificities of rat liver peroxisomal acyl-CoA oxidases: palmitoyl-CoA oxidase (inducible acyl-CoA oxidase), pristanoyl-CoA oxidase (non-inducible acyl-CoA oxidase), and trihydroxycoprostanoyl-CoA oxidase. J. Biol. Chem. 267: 20065-20074.
  20. Tokuoka K, Nakajima Y, Hirotsu K, Miyahara I, Nishina Y, Shiga K, et al. 2006. Three-dimensional structure of rat-liver acyl-CoA oxidase in complex with a fatty acid: insights into substrate-recognition and reactivity toward molecular oxygen. J. Biochem. 139: 789-795. https://doi.org/10.1093/jb/mvj088
  21. Oaxaca-Castillo D, Andreoletti P, Vluggens A, Yu S, van Veldhoven PP, Reddy JK, et al. 2007. Biochemical characterization of two functional human liver acyl-CoA oxidase isoforms 1a and 1b encoded by a single gene. Biochem. Biophys. Res. Commun. 360: 314-319. https://doi.org/10.1016/j.bbrc.2007.06.059
  22. Chen L, Zhang J, Chen WN. 2014. Engineering the Saccharomyces cerevisiae beta-oxidation pathway to increase medium chain fatty acid production as potential biofuel. PLoS One 9: e84853. https://doi.org/10.1371/journal.pone.0084853
  23. Picataggio S, Deanda K, Mielenz J. 1991. Determination of Candida tropicalis acyl coenzyme A oxidase isozyme function by sequential gene disruption. Mol. Cell. Biol. 11: 4333-4339. https://doi.org/10.1128/MCB.11.9.4333
  24. Zhang X, Li K, Jones RA, Bruner SD, Butcher RA. 2016. Structural characterization of acyl-CoA oxidases reveals a direct link between pheromone biosynthesis and metabolic state in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 113: 10055-10060. https://doi.org/10.1073/pnas.1608262113
  25. Hooks MA, Bode K, Couee I. 1996. Higher-plant medium- and short-chain acyl-CoA oxidases: identification, purification and characterization of two novel enzymes of eukaryotic peroxisomal beta-oxidation. Biochem. J. 320: 607-614. https://doi.org/10.1042/bj3200607
  26. Goncalves FA, Colen G, Takahashi JA. 2014. Yarrowia lipolytica and its multiple applications in the biotechnological industry. ScientificWorldJournal 2014: 476207.
  27. Haddouche R, Poirier Y, Delessert S, Sabirova J, Pagot Y, Neuveglise C, et al. 2011. Engineering polyhydroxyalkanoate content and monomer composition in the oleaginous yeast Yarrowia lipolytica by modifying the $\beta$-oxidation multifunctional protein. Appl. Microbiol. Biotechnol. 91: 1327-1340. https://doi.org/10.1007/s00253-011-3331-2
  28. Wache Y, Aguedo M, Choquet A, Gatfield IL, Nicaud JM, Belin JM. 2001. Role of beta-oxidation enzymes in gamma-decalactone production by the yeast Yarrowia lipolytica. Appl. Environ. Microbiol. 67: 5700-5704. https://doi.org/10.1128/AEM.67.12.5700-5704.2001
  29. Beopoulos A, Chardot T, Nicaud JM. 2009. Yarrowia lipolytica: a model and a tool to understand the mechanisms implicated in lipid accumulation. Biochimie 91: 692-696. https://doi.org/10.1016/j.biochi.2009.02.004
  30. Beopoulos A, Mrozova Z, Thevenieau F, Le Dall MT, Hapala I, Papanikolaou S, et al. 2008. Control of lipid accumulation in the yeast Yarrowia lipolytica. Appl. Environ. Microbiol. 74: 7779-7789. https://doi.org/10.1128/AEM.01412-08
  31. Mlickova K, Roux E, Athenstaedt K, d'Andrea S, Daum G, Chardot T, et al. 2004. Lipid accumulation, lipid body formation, and acyl coenzyme A oxidases of the yeast Yarrowia lipolytica. Appl. Environ. Microbiol. 70: 3918-3924. https://doi.org/10.1128/AEM.70.7.3918-3924.2004
  32. Thevenieau F. 2006. Metabolic engineering of the yeast Yarrowia lipolytica for the production of long-chain dicarboxylic acids from renewable oil feedstock. PhD thesis. Institut National Agronomique Paris-Grignon.
  33. Mli K, Luo Y, d'Andrea S, Pec P, Chardot T, Nicaud J-M. 2004. Acyl-CoA oxidase, a key step for lipid accumulation in the yeast Yarrowia lipolytica. J. Mol. Catal. B Enzym. 28: 81-85. https://doi.org/10.1016/j.molcatb.2004.01.007
  34. Luo YS, Nicaud JM, Van Veldhoven PP, Chardot T. 2002. The acyl-CoA oxidases from the yeast Yarrowia lipolytica: characterization of Aox2p. Arch. Biochem. Biophys. 407: 32-38. https://doi.org/10.1016/S0003-9861(02)00466-6
  35. Luo YS, Wang HJ, Gopalan KV, Srivastava DK, Nicaud JM, Chardot T. 2000. Purification and characterization of the recombinant form of acyl CoA oxidase 3 from the yeast Yarrowia lipolytica. Arch. Biochem. Biophys. 384: 1-8. https://doi.org/10.1006/abbi.2000.2079
  36. Wang H, Le Clainche A, Le Dall MT, Wache Y, Pagot Y, Belin JM, et al. 1998. Cloning and characterization of the peroxisomal acyl CoA oxidase ACO3 gene from the alkane-utilizing yeast Yarrowia lipolytica. Yeast 14: 1373-1386. https://doi.org/10.1002/(SICI)1097-0061(199811)14:15<1373::AID-YEA332>3.0.CO;2-1
  37. Wang H, Le Dall MT, Wache Y, Laroche C, Belin JM, Nicaud JM. 1999. Cloning, sequencing, and characterization of five genes coding for acyl-CoA oxidase isozymes in the yeast Yarrowia lipolytica. Cell Biochem. Biophys. 31: 165-174. https://doi.org/10.1007/BF02738170
  38. Thevenieau F, Le Dall MT, Nthangeni B, Mauersberger S, Marchal R, Nicaud JM. 2007. Characterization of Yarrowia lipolytica mutants affected in hydrophobic substrate utilization. Fungal Genet. Biol. 44: 531-542. https://doi.org/10.1016/j.fgb.2006.09.001
  39. Park S-Y, Ha S-C, Kim Y-G. 2017. The protein crystallography beamlines at the Pohang light source II. Biodesign 5: 30-34.
  40. Otwinowski Z, Minor W. 1997. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276: 307-326.
  41. Matthews BW. 1968. Solvent content of protein crystals. J. Mol. Biol. 33: 491-497. https://doi.org/10.1016/0022-2836(68)90205-2
  42. Vagin A, Teplyakov A. 2010. Molecular replacement with MOLREP. Acta Crystallogr. D Biol. Crystallogr. 66: 22-25.
  43. Emsley P, Cowtan K. 2004. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60: 2126-2132. https://doi.org/10.1107/S0907444904019158
  44. Murshudov GN, Skubak P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, et al. 2011. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 67: 355-367. https://doi.org/10.1107/S0907444911001314
  45. Krissinel E, Henrick K. 2007. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372: 774-797. https://doi.org/10.1016/j.jmb.2007.05.022
  46. Chovancova E, Pavelka A, Benes P, Strnad O, Brezovsky J, Kozlikova B, et al. 2012. CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput. Biol. 8: e1002708. https://doi.org/10.1371/journal.pcbi.1002708

Cited by

  1. Production of adipic acid by short- and long-chain fatty acid acyl-CoA oxidase engineered in yeast Candida tropicalis vol.43, pp.1, 2018, https://doi.org/10.1007/s00449-019-02202-w
  2. The Peroxisomal Targeting Signal 3 (PTS3) of the Budding Yeast Acyl-CoA Oxidase Is a Signal Patch vol.8, pp.None, 2018, https://doi.org/10.3389/fcell.2020.00198
  3. Functional Characterization of GhACX3 Gene Reveals Its Significant Role in Enhancing Drought and Salt Stress Tolerance in Cotton vol.12, pp.None, 2018, https://doi.org/10.3389/fpls.2021.658755