참고문헌
- Thuong PT, Pokharel YR, Lee MY, Kim SK, Bae K, Su ND, et al. 2009. Dual anti-oxidative effects of fraxetin isolated from Fraxinus rhinchophylla. Biol. Pharm. Bull. 32: 1527-1532. https://doi.org/10.1248/bpb.32.1527
- Shin E, Choi KM, Yoo HS, Lee CK, Hwang BY, Lee MK. 2010. Inhibitory effects of coumarins from the stem barks of Fraxinus rhynchophylla on adipocyte differentiation in 3T3-L1 cells. Biol. Pharm. Bull. 33: 1610-1614. https://doi.org/10.1248/bpb.33.1610
- Witaicenis A, Seito LN, da Silveira Chagas A, de Almeida LD Jr, Luchini AC, Rodrigues-Orsi P, et al. 2014. Antioxidant and intestinal anti-inflammatory effects of plant-derived coumarin derivatives. Phytomedicine 21: 240-246. https://doi.org/10.1016/j.phymed.2013.09.001
- Kaneko T, Tahara S, Takabayashi F, Harada N. 2004. Suppression of 8-oxo-2'-deoxyguanosine formation and carcinogenesis induced by N-nitrosobis(2-oxopropyl)amine in hamsters by esculetin and esculin. Free Radical Res. 38: 839-846. https://doi.org/10.1080/10715760410001715167
- Wang CJ, Hsieh YJ, Chu CY, Lin YL, Tseng TH. 2002. Inhibition of cell cycle progression in human leukemia HL-60 cells by esculetin. Cancer Lett. 183: 163-168. https://doi.org/10.1016/S0304-3835(02)00031-9
- Duan HQ, Zhang YD, Fan K, Suo ZW, Hu G, Mu X. 2007. Anti-inflammatory mechanism of esculetin. Chin. J. Vet. Med. 43: 45-46.
- Lin WL, Wang CJ, Tsai YY, Liu CL, Hwang JM, Tseng TH. 2000. Inhibitory effect of esculetin on oxidative damage induced by t-butyl hydroperoxide in rat liver. Arch. Toxicol. 74: 467-472. https://doi.org/10.1007/s002040000148
- Zhang T, Wang S. 2015. Esculin inhibits the inflammation of LPS-induced acute lung injury in mice via regulation of TLR/NF-kappaB pathways. Inflammation 38: 1529-1536. https://doi.org/10.1007/s10753-015-0127-z
- Rehman SU, Kim IS, Kang KS, Yoo HH. 2015. HPLC determination of esculin and esculetin in rat plasma for pharmacokinetic studies. J. Chromatogr. Sci. 53: 1322-1327. https://doi.org/10.1093/chromsci/bmv014
- Emond S, Mondeil S, Jaziri K, Andre I, Monsan P, Remaud-Simeon M, et al. 2008. Cloning, purification and characterization of a thermostable amylosucrase from Deinococcus geothermalis. FEMS Microbiol. Lett. 285: 25-32. https://doi.org/10.1111/j.1574-6968.2008.01204.x
- Cho HK, Kim HH, Seo DH, Jung JH, Park JH, Baek NI, et al. 2011. Biosynthesis of (+)-catechin glycosides using recombinant amylosucrase from Deinococcus geothermalis DSM 11300. Enzyme Microb. Technol. 49: 246-253. https://doi.org/10.1016/j.enzmictec.2011.05.007
- Park H, Kim J, Park JH, Baek NI, Park CS, Lee HS, Cha J. 2012. Bioconversion of piceid to piceid glucoside using amylosucrase from Alteromonas macleodii deep ecotype. J. Microbiol. Biotechnol. 22: 1698-1704. https://doi.org/10.4014/jmb.1208.08014
- Kim KH, Park YD, Park H, Moon KO, Ha KT, Baek NI, et al. 2014. Synthesis and biological evaluation of a novel baicalein glycoside as an anti-inflammatory agent. Eur. J. Pharmacol. 744: 147-156. https://doi.org/10.1016/j.ejphar.2014.10.013
- Kim MD, Jung DH, Seo DH, Jung JH, Seo EJ, Baek NI, et al. 2016. Acceptor specificity of amylosucrase from Deinococcus radiopugnans and its application for synthesis of rutin derivatives. J. Microbiol. Biotechnol. 26: 1845-1854. https://doi.org/10.4014/jmb.1606.06036
- Jung JH, Seo DH, Ha SJ, Song MC, Cha J, Yoo SH, et al. 2009. Enzymatic synthesis of salicin glycosides through transglycosylation catalyzed by amylosucrases from Deinococcus geothermalis and Neisseria polysaccharea. Carbohydr. Res. 344: 1612-1619. https://doi.org/10.1016/j.carres.2009.04.019
- Kim KH, Park H, Park HJ, Choi KH, Sadikot RT, Cha J, et al. 2016. Glycosylation enables aesculin to activate Nrf2. Sci. Rep. 6: 29956. https://doi.org/10.1038/srep29956
- Seo DH, Jung JH, Ha SJ, Song MC, Cha J, Yoo SH, et al. 2009. Highly selective biotransformation of arbutin to arbutin-alpha-glucoside using amylosucrase from Deinococcus geothermalis DSM 11300. J. Mol. Catal. B Enzym. 60: 113-118. https://doi.org/10.1016/j.molcatb.2009.04.006
피인용 문헌
- Natural and engineered transglycosylases: Green tools for the enzyme-based synthesis of glycoproducts vol.61, pp.None, 2018, https://doi.org/10.1016/j.cbpa.2020.11.004
- Whole cell biosynthesis of luteolin glycosides by engineered Corynebacterium glutamicum harboring the amylosucrase gene vol.127, pp.None, 2021, https://doi.org/10.1016/j.fbp.2021.03.010