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PSEUDO PROJECTIVE RICCI SYMMETRIC SPACETIMES

Uday Chand De, Pradip Majhi, and Sahanous Mallick

Abstract. The object of the present paper is to prove the non-existence

of pseudo projective Ricci symmetric spacetimes (PWRS)4 with differ-

ent types of energy momentum tensor. We also discuss whether a fluid
(PWRS)4 spacetime with the basic vector field as the velocity vector field

of the fluid can admit heat flux. Next we consider perfect fluid and dust
fluid (PWRS)4 spacetimes respectively. Finally we construct an example

of a (PWRS)4 spacetime.

1. Introduction

General relativity flows from the Einstein equation which implies that the
energy-momentum tensor is of vanishing divergence. This requirement of the
energy-momentum tensor is satisfied if this tensor is covariant constant, that is,
∇T = 0, where ∇ denotes the operator of covariant differentiation with respect
to the metric tensor g. In the general theory of relativity, energy-momentum
tensor plays an important role and the condition on energy-momentum tensor
for a perfect fluid spacetime changes the nature of spacetime [20]. In a recent
paper [3] Chaki and Roy studied general relavistic spacetime with covariant
constant energy-momentum tensor. The spacetime of general relativity and
cosmology is regarded as a connected 4-dimensional semi-Riemannian manifold
(M4, g) with Lorentzian metric g with signature (−,+,+,+). The geometry
of Lorentz manifold begins with the study of causal character of vectors of
the manifold. It is due to this causality that Lorentz manifold becomes a
convenient choice for the study of general relativity. Indeed by basing its study
on Lorentzian manifold the general theory of relativity opens the way to the
study of global questions about it ([2], [5], [8], [11], [12]) and many others. Also
several authors studied spacetimes in different way such as ([1], [13], [7], [16],
[22]) and many others.

Einstein’s field equation without cosmological constant is given by

(1.1) S(X,Y )− r

2
g(X,Y ) = κT (X,Y ),
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where r is the scalar curvature of the manifold and κ 6= 0. The equation
(1.1) of Einstein implies that matter determines the geometry of spacetime
and conversely that the motion of matter is determined by the metric tensor
of the space which is not flat.

In general relativity the matter content of the spacetime is described by the
energy momentum tensor. The matter content is assumed to be a fluid having
density and pressure and possessing dynamical and kinematical quantities like
velocity, acceleration, vorticity, shear and expansion.

In a perfect fluid spacetime, the energy momentum tensor T of type (0, 2)
is of the form ([18]):

(1.2) T (X,Y ) = pg(X,Y ) + (σ + p)A(X)A(Y ),

where σ and p are the energy density and the isotropic pressure respectively.
The velocity vector field ρ metrically equivalent to the non-zero 1-form A is
a time-like vector, that is, g(ρ, ρ) = −1. The fluid is called perfect because
of the absence of heat conduction terms and stress terms corresponding to
viscosity [11]. In addition, p and σ are related by an equation of state governing
the particular sort of perfect fluid under consideration. In general, this is
an equation of the form p = p(σ, T0), where T0 is the absolute temperature.
However, we shall only be concerned with situations in which T0 is effectively
constant so that the equation of state reduces to p = p(σ). In this case, the
perfect fluid is called isentropic [11]. Moreover, if p = σ, then the perfect
fluid is termed as stiff matter (see [20, page 66]). Recently, De et al. ([6],
[7]) studied conformally flat almost pseudo-Ricci symmetric spacetimes and
spacetimes with semisymmetric energy momentum tensor respectively. Also in
[14] Mallick, Suh and De studied spacetime with pseudo-projective curvature
tensor. Moreover in [17] Mantica and Molinari studied weakly Z symmetric
manifolds. Also several authors studied spacetimes in different way such as
([7,9,10,13,16,22]) and many others. In [3] Chaki and Ray studied spacetimes
with covariant constant energy momentum tensor. Motivated by the above
studies in the present paper we characterize pseudo projective Ricci symmetric
spacetimes.

Apart from conformal curvature tensor, the projective curvature tensor is
another important tensor from the differential geometric point of view. Let
M be an n-dimensional Riemannian manifold. If there exists a one-to-one
correspondence between each coordinate neighbourhood of M and a domain
in Euclidean space such that any geodesic of the Riemannian manifold corre-
sponds to a straight line in the Euclidean space, then M is said to be locally
projectively flat. For n ≥ 3, M is locally projectively flat if and only if the well
known Projective curvature tensor W vanishes at each point of the manifold.

Projective curvature tensor W in a semi-Riemannian manifold (Mn, g)(n ≥
2) is defined by [21]

(1.3) W (X,Y )Z = R(X,Y )Z − 1

n− 1
[S(Y,Z)X − S(X,Z)Y ],
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where R is the Riemannian curvature tensor and S is the Ricci tensor of type
(0, 2). From this tensor W a symmetric tensor P of type (0,2) can be obtained
as follows:

(1.4) P (X,Y ) = W̃ (X, ei, ei, Y ),

where W̃ (X,Y, Z,W ) = g(W (X,Y )Z,W ) and {ei}, i = 1, 2, 3, . . . , n is an
orthonormal basis of the tangent space at each point, i being summed in (1.4)
for 1 ≤ i ≤ n. This tensor P is called the projective Ricci tensor.

In the present paper we consider a special type of spacetime which is called
pseudo projective Ricci symmetric spacetime. The notion of pseudo projective
Ricci symmetric manifold was introduced by Chaki and Saha [4]. A non-flat
semi-Riemannian manifold (Mn, g)(n > 2) is said to be pseudo projective Ricci
symmetric manifold if its projective Ricci tensor P ( 6= 0) satisfies the condition

(1.5) (∇XP )(Y,Z) = 2A(X)P (Y,Z) +A(Y )P (X,Z) +A(Z)P (Y,X),

where A is a non-zero 1-form given by

(1.6) g(X, ρ) = A(X)

for every vector field X and ∇ denotes the operator of covariant differentiation
with respect to g. Such an n-dimensional manifold of this kind shall be denoted
by (PWRS)n. From (1.3) and (1.4) we have

(1.7) P (X,Y ) =
n

n− 1
S(X,Y )− r

n− 1
g(X,Y ),

where r is the scalar curvature of the manifold. A Lorentzian manifold (M4, g)
is said to be a pseudo projective Ricci symmetric spacetime (PWRS)4 if the
projective Ricci tensor satisfies (1.5), where the vector field ρ metrically equiv-
alent to the 1-form A is a time-like vector.

In [15] the authors introduced the symmetric tensor Zkl = Rkl +φgkl, where
φ is an arbitrary scalar function: they studied then pseudo Z symmetric man-
ifolds defined by

∇kZjl = 2AkZjl +AjZkl +AlZjk.

It is worth to note that from equation (1.7) we have Pkl = n
n−1Zkl with φ = −R

n .
Thus pseudo projective Ricci symmetric manifolds are a particular case of
pseudo Z symmetric manifolds.

Let l and L denote respectively the symmetric endomorphisms of the tangent
space at each point corresponding to the tensors P and S. Then

(1.8) g(lX, Y ) = P (X,Y ),

and

(1.9) g(LX, Y ) = S(X,Y ).

From (1.5) it follows that

(1.10) (∇X l)(Y ) = 2A(X)lY +A(Y )lX + P (X,Y )ρ.
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Using (1.8), (1.9), (1.10) and (1.7) we obtain

(1.11) S(X, ρ) =
r

4
g(X, ρ),

which implies that ρ is an eigenvector corresponding to the eigenvalue r
4 .

The paper is organized as follows: After introduction, in Section 2, we prove
the non-existence of a (PWRS)4 spacetime with covariant constant energy mo-
mentum tensor. Similarly, in the next two sections we prove the non-existence
(PWRS)4 spacetimes with Cyclic parallel energy momentum tensor and Co-
dazzi type of energy momentum tensor respectively. Section 5 is concerned
with the possibility of a fluid (PWRS)4 spacetime to admit heat flux. In Sec-
tions 6 and 7 we consider perfect fluid and dust fluid (PWRS)4 spacetimes
respectively. Finally, we construct an example of a (PWRS)4 spacetime.

2. (PWRS)4 spacetime with covariant constant energy momentum
tensor

In this section we consider a (PWRS)n spacetime of non-zero scalar curva-
ture with covariant constant energy momentum tensor, i.e.,

(2.1) (∇XT )(Y, Z) = 0.

In a paper [4] Chaki and Saha prove that the scalar curvature r of a (PWRS)n
is constant. We suppose that the (PWRS)n spacetime obeys Einstein’s field
equation without cosmological constant. Then[18]

(2.2) S(Y, Z)− r

2
g(Y,Z) = κT (Y, Z),

where κ is the gravitational constant. Differentiating (2.2), we get

(2.3) (∇XS)(Y,Z)− 1

2
g(Y, Z)dr(X) = κ(∇XT )(Y, Z).

Now from (1.7), we obtain

(2.4) (∇XP )(Y,Z) =
4

3
(∇XS)(Y,Z)− 1

3
g(Y,Z)dr(X).

Since r is constant and T is covariant constant, we obtain from (2.3) and (2.4)
that

(∇XS)(Y,Z) = 0

and

(∇XP )(Y,Z) = 0.

Hence from (1.5) and (1.7) we obtain

2A(X)[
4

3
S(Y,Z)− r

3
g(Y,Z)] +A(Y )[

4

3
S(X,Z)− r

3
g(X,Z)]

+A(Z)[
4

3
S(X,Y )− r

3
g(X,Y )] = 0.(2.5)
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Putting Z = ρ in (2.5) and using (1.11), we have

(2.6) S(X,Y ) =
r

4
g(X,Y ).

But, in virtue of (1.7) and (2.6) we obtain that P (X,Y ) = 0 which is a contra-
diction.

Thus we can state the following:

Theorem 2.1. There does not exist a pseudo projective Ricci symmetric space-
time with covariant constant energy momentum tensor satisfying Einstein’s field
equation without cosmological constant.

3. (PWRS)4 spacetime with cyclic parallel energy momentum
tensor

In this section we consider a (PWRS)4 spacetime of non-zero scalar curva-
ture satisfying cyclic parallel energy momentum tensor, i.e.,

(3.1) (∇XT )(Y,Z) + (∇Y T )(X,Z) + (∇ZT )(X,Y ) = 0.

It has been proved by Chaki and Saha [4] that the scalar curvature r of a
(PWRS)4 spacetime is constant. We suppose that the (PWRS)4 spacetime
obey’s Einstein’s field equation without cosmological constant. Then equation
(2.2) holds. Since T is cyclic parallel and r is constant, we obtain from (3.1)
that

(3.2) (∇XS)(Y, Z) + (∇Y S)(X,Z) + (∇ZS)(X,Y ) = 0.

Using (1.7) and (3.2) we have

(3.3) (∇XP )(Y,Z) + (∇Y P )(X,Z) + (∇ZP )(X,Y ) = 0.

Now using (1.6) and (1.7) in (3.3) we obtain

A(X)[
4

3
S(Y, Z)− r

3
g(Y,Z)] +A(Y )[

4

3
S(X,Z)− r

3
g(X,Z)]

+A(Z)[
4

3
S(X,Y )− r

3
g(X,Y )] = 0.(3.4)

Putting Z = ρ in (3.4) and using (1.11) we finally obtain

(3.5) S(X,Y ) =
r

4
g(X,Y ).

But, in virtue of (1.7) and (3.5) we obtain that P (X,Y ) = 0 which is a contra-
diction.

Thus we can state the following:

Theorem 3.1. There does not exist a pseudo projective Ricci symmetric space-
time with cyclic parallel energy momentum tensor satisfying Einstein’s field
equation without cosmological constant.
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4. (PWRS)4 spacetime with Codazzi type energy momentum
tensor

In this section we consider a (PWRS)4 spacetime of non-zero scalar curva-
ture with Codazzi type energy momentum tensor, i.e.,

(4.1) (∇XT )(Y,Z) = (∇ZT )(Y,X).

It has been proved by Chaki and Saha [4] that the scalar curvature r of a
(PWRS)4 spacetime is constant. We suppose that the (PWRS)4 spacetime
obey’s Einstein’s field equation without cosmological constant. Then equation
(2.2) holds. Since T is of Codazzi type and r is constant, we obtain from (4.1)
that

(4.2) (∇XS)(Y,Z) = (∇ZS)(Y,X).

Using (1.7) and (4.2) we have

(4.3) (∇XP )(Y,Z) = (∇ZP )(Y,X).

Now using (1.6) and (1.7) in (4.3) we obtain

(4.4) A(X)[
4

3
S(Y,Z)− r

3
g(Y, Z)]−A(Z)[

4

3
S(X,Y )− r

3
g(X,Y )] = 0.

Putting Z = ρ in (4.4) and using (1.11) we finally obtain

(4.5) S(X,Y ) =
r

4
g(X,Y ).

But, in virtue of (1.7) and (4.5) we obtain that P (X,Y ) = 0 which is a contra-
diction.

Thus we can state the following:

Theorem 4.1. There does not exist a pseudo projective Ricci symmetric space-
time with Codazzi type of energy momentum tensor satisfying Einstein’s field
equation without cosmological constant.

5. Possibility of a fluid (PWRS)4 spacetime to admit heat flux

In this section we discuss whether a fluid (PWRS)4 spacetime with the basic
vector field as the velocity vector field of the fluid can admit heat flux.

If possible, let us suppose that the energy momentum tensor be of the fol-
lowing form:

(5.1) T (X,Y ) = (σ + p)A(X)A(Y ) + pg(X,Y ) +A(X)B(Y ) +A(Y )B(X),

where g(X, ξ) = B(X), for all X, ξ being the heat flux vector field. Then, since
ξ is spacelike, g(ρ, ξ) = 0, i.e.,

(5.2) B(ρ) = 0.

In this case, Einstein’s field equation with cosmological constant can be written
as follows:

S(X,Y )− r

2
g(X,Y ) + λg(X,Y ) = κ[(σ + p)A(X)A(Y ) + pg(X,Y )
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+A(X)B(Y ) +A(Y )B(X)].(5.3)

Now putting Y = ρ in (5.3) and using equations (1.11) and (5.3) we obtain

(5.4) κB(X) = (
r

4
− σκ− λ)A(X).

Again putting X = ρ in (5.4) we have

(5.5)
r

4
− σκ− λ = 0.

Hence from (5.4), it follows that B(X) = 0.
Therefore we can state the following:

Theorem 5.1. If in a (PWRS)4 spacetime of non-zero scalar curvature the
matter distribution is a fluid with the basic vector field as the velocity vector
field of the fluid, then such a fluid can not admit heat flux.

6. Perfect fluid (PWRS)4 spacetimes

Now we consider the matter distribution in perfect fluid whose velocity vec-
tor field is the vector field ρ corresponding to the 1-form A of the spacetime.
Therefore the energy momentum tensor T of type (0, 2) is of the form ([18]):

(6.1) T (X,Y ) = pg(X,Y ) + (σ + p)A(X)A(Y ),

where σ and p are the energy density and the isotropic pressure respectively.
Hence from the Einstein’s field equation we get

(6.2) S(X,Y )− r

2
g(X,Y ) = κ[pg(X,Y ) + (σ + p)A(X)A(Y )].

Putting Y = ρ in (6.2) and then using (1.11) we obtain that

(6.3) r = 4κσ.

Also taking a frame field and contracting X and Y in (6.2) we get

(6.4) r = κ(σ − 3p).

Since r is constant in a perfect fluid (PWRS)4 spacetime, then the energy
density and the isotropic pressure are constants. Also equations (6.3) and (6.4)
yields

(6.5) σ + p = 0.

Thus in view of the above we can state the following:

Theorem 6.1. A perfect fluid (PWRS)4 spacetime obeying Einstein’s field
equation without cosmological constant represents the matter contents of the
spacetime satisfy the vacuum like state equation and the energy density and the
isotropic pressure are constants.

Remark 1. In this case p = −σ, that is, p = p(σ). Hence we conclude that the
fluid is isentropic [11].
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7. Dust fluid (PWRS)4 spacetimes

In a dust or pressureless fluid spacetime, the energy momentum tensor is of
the form [19]

(7.1) T (X,Y ) = σA(X)A(Y ),

where σ is the energy density of the dust-like matter and A is a non-zero 1-form
such that g(X, ρ) = A(X) for all X, A being the velocity vector field of the
flow, that is, g(ρ, ρ) = −1.

Using (1.1) and (7.1) we obtain

(7.2) S(X,Y )− r

2
g(X,Y ) = κσA(X)A(Y ).

A frame field after contraction over X and Y leads to

(7.3) r = κσ.

Putting Y = ρ in (7.2) and then using (1.11) we obtain that

(7.4) r = 4κσ.

Thus combining the equations (7.3)and (7.4), we finally obtain that

(7.5) σ = 0.

Thus from (7.1) and (7.5) we conclude that

T (X,Y ) = 0.

This means that the spacetime is devoid of matter. Thus we can state the
following:

Theorem 7.1. A dust fluid (PWRS)4 spacetime satisfying Einstein’s field
equation without cosmological constant is vacuum.

8. Example of a (PWRS)4 spacetime

In this section we prove the existence of a (PWRS)4 spacetime by construct-
ing a non-trivial concrete example.

We consider a Lorentzian manifold (M4, g) endowed with the Lorentzian
metric g given by

(8.1) ds2 = gijdx
idxj = (dx1)2 + (x1)2(dx2)2 + (x2)2(dx3)2 − (dx4)2,

where i, j = 1, 2, 3, 4.
The only non-vanishing components of the Christoffel symbols, the curvature

tensor, the Ricci tensor, the projective Ricci tensor and the derivatives of the
components of projective Ricci tensors are

Γ1
22 = −x1, Γ2

33 = − x2

(x1)2
, Γ2

12 =
1

x1
, Γ3

23 =
1

x2
, R1332 = −x

2

x1
,

S12 = − 1

x1x2
, P12 = − 4

3x1x2
, P12,1 =

8

3(x1)2x2
, P12,2 =

4

3(x2)2x1
.
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It can be easily shown that the scalar curvature of the manifold is zero. There-
fore R4 with the considered metric is a Lorentzian manifold (M4, g) of vanishing
scalar curvature. We shall now show that this M4 is a (PWRS)4 spacetime
i.e., it satisfies the defining relation (1.5).

We choose the associated 1-form as follows:

Ai(x) =

 − 2
3x1 for i = 1
− 1

3x2 for i = 2,
0, otherwise

at any point x ∈ R4.
Now equation (1.5) reduces to

P12,1 = 2A1P12 +A1P12 +A2P11,(8.2)

P12,2 = 2A2P12 +A2P12 +A1P22.(8.3)

Clearly, equations (8.2) and (8.3) are all true. So the manifold under consider-
ation is (PWRS)4 spacetime.

Thus we can state the following:

Theorem 8.1. Let (R4, g) be a 4-dimensional Lorentzian manifold with the
Lorentzian metric g given by

ds2 = gijdx
idxj = (dx1)2 + (x1)2(dx2)2 + (x2)2(dx3)2 − (dx4)2,

where i, j = 1, 2, 3, 4. Then (R4, g) is a (PWRS)4 spacetime.
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of the paper.
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