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AN ENTIRE FUNCTION SHARING A POLYNOMIAL WITH

LINEAR DIFFERENTIAL POLYNOMIALS

Goutam Kumar Ghosh

Abstract. The uniqueness problems on entire functions sharing at least

two values with their derivatives or linear differential polynomials have
been studied and many results on this topic have been obtained. In this

paper, we study an entire function f(z) that shares a nonzero polynomial

a(z) with f (1)(z), together with its linear differential polynomials of the

form: L = L(f) = a1(z)f (1)(z)+a2(z)f (2)(z)+ · · ·+an(z)f (n)(z), where

the coefficients ak(z)(k = 1, 2, . . . , n) are rational functions and an(z) 6≡
0.

1. Introduction, definitions and results

In the paper, by meromorphic functions we shall always mean meromorphic
functions in the complex plane C. We adopt the standard notations of the
Nevanlinna theory of meromorphic functions as explained in [2]. It will be
convenient to let E denote any set of positive real numbers of finite linear
measure, not necessarily the same at each occurrence. For a non-constant
meromorphic function h, we denote by T (r, h) any quantity satisfying S(r, h) =
o{T (r, h)} as r →∞ and r /∈ E.

Let f and g be two nonconstant meromorphic functions and let a be a small
function of f . We denote by E(a; f) the set of a-points of f , where each point
is counted according its multiplicity. We denote by E(a; f) the reduced form
of E(a; f). We say that f , g share a CM, provided that E(a; f) = E(a; g), and
we say that f and g share a IM, provided that E(a; f) = E(a; g). In addition,
we say that f and g share ∞ CM, if 1

f and 1
g share 0 CM, and we say that f

and g share ∞ IM, if 1
f and 1

g share 0 IM.

In 1977, L. A. Rubel and C. C. Yang [8] first investigated the uniqueness of
entire functions, which share certain values with their derivatives. The follow-
ing is the result of Rubel and Yang [8].
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Theorem 1.1 ([8]). Let f be a nonconstant entire function. If E(a; f) =
E(a; f (1)) and E(b; f) = E(b; f (1)) for distinct finite complex numbers a and b,
then f ≡ f (1).

In 1979, E. Mues and N. Steinmetz [7] took up the case of IM shared values
in the place of CM shared values and proved the following theorem.

Theorem 1.2 ([7]). Let f be a nonconstant entire function. If E(a; f) =
E(a; f (1)) and E(b; f) = E(b; f (1)) for distinct finite complex numbers a and b,
then f ≡ f (1).

Afterwards in 1986 G. Jank, E. Mues and L. Volkman [3] considered the
case of a single shared value by the first two derivatives of an entire function.
They proved the following result:

Theorem 1.3 ([3]). Let f be a nonconstant entire function and a(6= 0) be a
finite number. If E(a; f) = E(a; f (1)) and E(a; f) ⊂ E(a; f (2)), then f ≡ f (1).

In [11] it was observed by the following example that in Theorem 1.3 the
second derivative can not be straightway replaced by a higher order derivative.

Example 1.1. Let (k ≥ 3) be a positive integer and w(6= 1) be a root of
the algebraic equation wk−1 = 1. We put f = ewz + w − 1, then E(w; f) =
E(w; f (1)) = E(w; f (k)) but f 6≡ f (1).

In this context Zhong [11] extended Theorem 1.3 to higher order derivatives
and proved the following result.

Theorem 1.4 ([11]). Let f be a nonconstant entire function and a(6= 0) be
a finite complex number. If f and f (1) share the value a CM and E(a; f) ⊂
E(a; f (n)) ∩ E(a; f (n+1)) for n(≥ 1), then f ≡ f (n).

For A ⊂ C ∪ {∞}, we denote by NA(r, a; f)(NA(r, a; f)) the counting func-
tion (reduced counting function) of those a-points of f which belong to A.

In 2011, I. Lahiri and G. K. Ghosh [4] improved Theorem 1.4 in the following
manner.

Theorem 1.5 ([4]). Let f be a nonconstant entire function and a be a nonzero
finite number. Suppose that A = E(a; f) \ E(a; f (1)) and B = E(a; f (1)) \
{E(a; f (n)) ∩ E(a; f (n+1))} for n(≥ 1). If each common zero of f − a and
f (1) − a has the same multiplicity and NA(r, a; f) + NB(r, a; f (1)) = S(r, f),
then f = λez or f = λez + a, where λ( 6= 0) is a constant.

In 1999 P. Li [5] extended Theorem 1.4 to linear differential polynomials and
proved the following result.

Theorem 1.6 ([5]). Let f be a nonconstant entire function and L = L(f) =
a1f

(1)(z)+a2f
(2)(z)+ · · ·+anf

(n)(z) be a linear differential polynomial, where
a1, a2, . . . , an( 6= 0) are complex numbers. Suppose that a is a nonzero finite
value. If E(a; f) = E(a; f (1)) and E(a; f) ⊂ E(a;L) ∩ E(a;L(1)), then f ≡
f (1) ≡ L.
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In the paper we extend Theorem 1.6 by considering shared polynomial in-
stead of shared value also by considering linear differential polynomials with
rational coefficients instead of linear differential polynomials with constant co-
efficients.

For two subsets A and B of C, we denote by A∆B the set (A−B)∪(B−A),
which is called the symmetric difference of the sets A and B.

We now state the main result of the paper.

Theorem 1.7. Let f be a nonconstant entire function and a = a(z)( 6≡ 0) be a
polynomial with deg(a) 6= deg(f). Suppose that A = E(a; f)∆E(a; f (1)), B =
E(a; f (1)) \ {E(a; f (2))∩E(a;L)∩E(a;L(1))}, and L = L(f) = a1(z)f (1)(z) +
a2(z)f (2)(z) + · · ·+ an(z)f (n)(z) be a linear differential polynomials, where the
coefficients ak(z)(k = 1, 2, . . . , n) are rational functions and an(z) 6≡ 0. Then
f ≡ f (1) ≡ L, provided the following hold:

(i) E1)(a; f) ⊂ E(a; f (1)),

(ii) NA∪B(r, a; f) +NA(r, a; f (1)) = S(r, f), and
(iii) each common zero of f − a and f (1) − a has the same multiplicity.

Putting A = B = ∅ we obtain the following corollary.

Corollary 1.1. Let f be a nonconstant entire function and a = a(z)( 6≡ 0)
be a polynomial with deg(a) 6= deg(f). If E(a; f) = E(a; f (1)) and E(a; f) ⊂
E(a; f (2)) ∩ E(a;L) ∩ E(a;L(1)), n(≥ 1), where L is defined in Theorem 1.7,
then f ≡ f (1) ≡ L.

2. Lemmas

In this section we need the following lemmas.

Lemma 2.1 ([1]; see also [9]). Let f be a meromorphic function and k be
a positive integer. Suppose that f is a solution of the following differential
equation: a0w

(k) + a1w
(k−1) + · · ·+ akw = 0, where a0( 6= 0), a1, a2, . . . , ak are

constants. Then T (r, f) = O(r). Furthermore, if f is transcendental, then
r = O(T (r, f)).

Lemma 2.2 ([1]). Let f be a meromorphic function and n be a positive integer.
If there exist meromorphic functions a0(6≡ 0), a1, a2, . . . , an such that

a0f
n + a1f

n−1 + · · ·+ an−1f + an ≡ 0,

then

m(r, f) ≤ nT (r, a0) +

n∑
j=1

m(r, aj) + (n− 1) log 2.

Lemma 2.3 ([6]; see also [10, p. 28]). Let f be a nonconstant meromorphic
function. If

R(f) =
a0f

p + a1f
p−1 + · · ·+ ap

b0fq + b1fq−1 + · · ·+ bq
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is an irreducible rational function in f with the coefficients being small functions
of f and a0b0 6≡ 0, then

T (r,R(f)) = max{p, q}T (r, f) + S(r, f).

Lemma 2.4. Let f , a0, a1, a2, . . . , ap, b0, b1, b2, . . . , bq be meromorphic func-
tions. If

R(f) =
a0f

p + a1f
p−1 + · · ·+ ap

b0fq + b1fq−1 + · · ·+ bq
(a0b0 6≡ 0),

then

T (r,R(f)) = O(T (r, f) +

p∑
i=0

T (r, ai) +

q∑
j=0

T (r, bj)).

Proof. The lemma follows from the first fundamental theorem and the proper-
ties of the characteristic function. �

Lemma 2.5 ([2, p. 68]). Let f be a transcendental meromorphic function and
fnP (z) = Q(z), where P (z), Q(z) are differential polynomials generated by f
and the degree of Q is at most n. Then m(r, P ) = S(r, f).

Lemma 2.6 ([2, p. 69]). Let f be a nonconstant meromorphic function and

g(z) = fn(z) + Pn−1(f),

where Pn−1(f) is a differential polynomial generated by f and of degree at most
n− 1.

If N(r,∞; f) + N(r, 0; g) = S(r, f), then g(z) = hn(z), where h(z) =

f(z) + a(z)
n and hn−1(z)a(z) is obtained by substituting h(z) for f(z), h(1)(z)

for f (1)(z) etc. in the terms of degree n− 1 in Pn−1(f).

Let us note the special case, where Pn−1(f) = a0(z)fn−1+ terms of degree
n− 2 at most. Then hn−1(z)a(z) = a0(z)hn−1(z) and so a(z) = a0(z). Hence

g(z) = (f(z) + a0(z)
n )n.

Lemma 2.7 ([2, p. 47]). Let f be a nonconstant meromorphic function and
a1,a2,a3 be three distinct meromorphic functions satisfying T (r, aµ) = S(r, f)
for µ = 1, 2, 3. Then

T (r, f) ≤ N(r, 0; f − a1) +N(r, 0; f − a2) +N(r, 0; f − a3) + S(r, f).

3. Proof of the theorem

Proof of Theorem 1.7. Step 1. We verify that f cannot be a polynomial. If f
is a polynomial, then T (r, f) = O(log r) and so NA∪B(r, a; f) = S(r, f) implies
that A = B = ∅. Therefore E(a; f)∆E(a; f (1)) = {E(a; f) − E(a; f (1))} ∪
{E(a; f (1))− E(a; f)} = ∅ implies that E(a; f) = E(a; f (1)).

Let deg(f) = m and deg(a) = p. If m ≥ p + 1, then deg(f − a) = m and
deg(f (1) − a) ≤ m − 1. Since E(a; f) = E(a; f (1)) and each common zero of
f − a and f (1) − a has the same multiplicity, we arrive at a contradiction.
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If m ≤ p−1, then deg(f−a) = deg(f (1)−a) = p. Since E(a; f) = E(a; f (1))
and each common zero of f −a and f (1)−a has the same multiplicity, we have
f (1) − a = k(f − a), where (k 6= 0) is a constant. If k 6= 1, then kf − f (1) ≡
(k − 1)a, which is impossible as deg(k − 1)a = p > m = deg(kf − f (1)). If
k = 1, then f (1) ≡ f but f is a polynomial, which is a contradiction. Therefore
f is a transcendental entire function.

Step 2. We prove that

N(2(r, a; f) = S(r, f).(3.1)

From the hypothesis (iii) it can be easily seen that each common zero of f − a
and f (1)−a has the same multiplicity. Let z0 be a zero of f−a and f (1)−a with
multiplicity q(≥ 2). Then z0 is a zero of f (1)−a(1) with multiplicity q−1. Hence
z0 is a zero of a− a(1) = (f (1)− a(1))− (f (1)− a) with multiplicity q− 1. Since
q ≤ 2(q−1), we have N(2(r, a; f) ≤ 2N(r, 0; a−a(1))+NA(r, a; f) = O(log r)+
S(r, f), but f is a transcendental entire function, so N(2(r, a; f) = S(r, f).

Step 3. We prove that

T (r, f) ≤ 2N(r, 0; f − a) + S(r, f).(3.2)

By the first fundamental theorem we get

T (r, f) = T (r, f − a) + S(r, f)

= T (r,
1

f − a
) + S(r, f)

= N(r,
1

f − a
) +m(r,

1

f − a
) + S(r, f)

≤ N(r,
1

f − a
) +m(r,

1

f (1) − a(1)
) + S(r, f)

= N(r,
1

f − a
) + T (r, f (1))−N(r,

1

f (1) − a(1)
) + S(r, f).(3.3)

Now by Lemma 2.7 we get

T (r, f (1)) ≤ N(r, 0; f (1) − a) +N(r, 0; f (1) − a(1)) +N(r,∞; f (1)).

Then from (3.3) we get

(3.4)
T (r, f) ≤ N(r, 0; f − a) +N(r, 0; f (1) − a) +N(r, 0; f (1) − a(1))

−N(r, 0; f (1) − a(1)) + S(r, f).

Let us denote by Np
(k(r, 0;G) the counting function of zeros of G with multi-

plicities not less than k and a zero of multiplicity q(≥ k) is counted q−p times,
where p ≤ k.

Now

N(r, 0; f − a) +N(r, 0; f (1) − a(1))−N(r, 0; f (1) − a(1))

= N(r, 0; f − a) +N1
(2(r, 0; f − a)−N1

(2(r, 0; f (1) − a(1))
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= N(r, 0; f − a) +N (2(r, 0; f − a) +N2
(3(r, 0; f − a)−N1

(2(r, 0; f (1) − a(1))

≤ N(r, 0; f − a) +N1
(2(r, 0; f (1) − a(1))−N1

(2(r, 0; f (1) − a(1)) + S(r, f)

= N(r, 0; f − a) + S(r, f).

Therefore from (3.4) we get

T (r, f) ≤ N(r, 0; f − a) +N(r, 0; f (1) − a) + S(r, f).(3.5)

Since

N(r, 0; f (1) − a) ≤ N(r, 0; f − a) +NA(r, 0; f (1) − a)

= N(r, 0; f − a) + S(r, f).(3.6)

Then from (3.5) and (3.6) we get (3.2).

Now we suppose that λ = f(1)−a
f−a and F = f − a. Then

F (1) = λF + a− a(1) = λ1F + µ1,(3.7)

where λ1 = λ and µ1 = a− a(1) = b, say.
Differentiating (3.7) and using (3.7) repeatedly we get

F (k) = λkF + µk,(3.8)

where λk+1 = λ
(1)
k + λ1λk and µk+1 = µ

(1)
k + µ1λk for k = 1, 2, . . ..

Step 4. Now we shall prove that T (r, λ) = S(r, f). If λ is constant, then
obviously T (r, λ) = S(r, f). So we suppose that λ is nonconstant. From the
hypotheses we get

N(r, 0;λ) +N(r,∞;λ) ≤ NA(r, 0; f − a) +NA(r, 0; f (1) − a)

= S(r, f).(3.9)

Put k = 1 in λk+1 = λ
(1)
k + λ1λk we get λ2 = λ2 + d1λ, where d1 = λ(1)

λ .

Again putting k = 2 in λk+1 = λ
(1)
k + λ1λk we get λ3 = λ

(1)
2 + λ1λ2, so

λ3 = λ3 + 3d1λ
2 + d2λ, where d2 = d21 + d

(1)
1 . Similarly λ4 = λ

(1)
3 + λ1λ3 =

λ4 + 6d1λ
3 + (6d21 + 3d

(1)
1 + d2)λ2 + (d

(1)
2 + d1d2)λ. Therefore, in general, we

get for k ≥ 2

λk = λk +

k−1∑
j=1

αjλ
j ,(3.10)

where T (r, αj) = O(N(r, 0;λ) +N(r,∞;λ)) +S(r, λ) = S(r, f) for j = 1, 2, . . .,
k − 1.

Again put k = 1 in µk+1 = µ
(1)
k + µ1λk we get µ2 = µ

(1)
1 + µ1λ1 = bλ+ b(1).

Also putting k = 2 in µk+1 = µ
(1)
k + µ1λk we obtain by (3.10), µ3 = µ

(1)
2 +

µ1λ2 = bλ(1) + b(1)λ+ b(2) + b(λ2 +d1λ) = bλ2 + (b(1) + 2bd1)λ+ b(2). Similarly

µ4 = bλ3 + (2bd1 + b(1) + bα2)λ2 + (b(2) + 2b(1)d1 + bd1 + α
(1)
1 + bd21 + α1d

(1) +

bα1)λ+ b(3).
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Therefore, in general, for k ≥ 2

µk =

k−1∑
j=1

βjλ
j + b(k−1),(3.11)

where T (r, βj) = O(N(r, 0;λ) +N(r,∞;λ)) +S(r, λ) = S(r, f) for j = 1, 2, . . .,
k − 1 and βk−1 = b.

First suppose that either n ≥ 2 or n = 1 and a1 6= 1. Let

Ψ =
(a− L(a))(f (1) − a(1))− (a− a(1))(L− L(a))

f − a
.(3.12)

By the lemma of logarithmic derivative, we have m(r,Ψ) = S(r, f). It is not
difficult to see that the poles of Ψ arise from the poles of ak(z)(k = 1, 2, . . . , n),
poles of a, and the multiple zero of f − a but any multiple zero of f − a
is a zero of a − a(1). Now from (3.12) by (3.1) and by hypotheses we get
N(r,Ψ) ≤ N(2(r, a; f) + NA∪B(r, a; f) + (n + 1)N(r,∞; a) + N(r,∞; ak) =
S(r, f) + O(log r), and so T (r,Ψ) = m(r,Ψ) + O(log r) + S(r, f) = S(r, f),
because f is a transcendental entire function. Using (3.8), (3.10) and (3.11) we
get

L(F ) = a1(z)F (1) +

n∑
k=2

ak(z)F (k)

= a1(z)(λF + b) +

n∑
k=2

ak(z)(λk +

k−1∑
j=1

αjλ
j)F

+

n∑
k=2

ak(z)(

k−1∑
j=1

βjλ
j + b(k−1)).

Therefore from (3.12) we get

{Ψ + a1(z)bλ+

n∑
k=2

ak(z)b(λk +

k−1∑
j=1

αjλ
j)− λ(a− L(a))}F

+ b{ba1(z) +

n∑
k=2

ak(z)(

k−1∑
j=1

βjλ
j + b(k−1))− (a− L(a))} = 0.(3.13)

If Ψ + a1(z)bλ+
n∑
k=2

ak(z)b(λk +
k−1∑
j=1

αjλ
j)− λ(a− L(a)) ≡ 0, then by Lemma

2.2 we get m(r, λ) = S(r, f). Therefore by (3.9) we have T (r, λ) = S(r, f).
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Next suppose that Ψ+a1(z)bλ+
n∑
k=2

ak(z)b(λk+
k−1∑
j=1

αjλ
j)−λ(a−L(a)) 6≡ 0.

Then from (3.13) we get

F = −
b{ba1(z) +

n∑
k=2

ak(z)(
k−1∑
j=1

βjλ
j + b(k−1))− (a− L(a))}

Ψ + a1(z)bλ+
n∑
k=2

ak(z)b(λk +
k−1∑
j=1

αjλj)− λ(a− L(a))

.(3.14)

Then from (3.14) we get by Lemma 2.4, T (r, F ) = O(T (r, λ)) + S(r, f) but
T (r, f) = T (r, F + a) ≤ T (r, F ) + S(r, f) also T (r, F ) ≤ T (r, f) + S(r, f), i.e.,
T (r, f) = T (r, F ) + S(r, f) = O(T (r, λ)) + S(r, f) this implies that S(r, f) is
replaceable by S(r, λ).

Also from (3.14) we see that F is a rational function in λ, which can be
made irreducible. We put

F =
Pl(λ)

Ql+1(λ)
,(3.15)

where Pl(λ) and Ql+1(λ) are relatively prime polynomials in λ of respective
degrees l and l + 1. Also the coefficients of the both the polynomials are
rational functions. Without loss of generality we assume that Ql+1(λ) is a
monic polynomial. We further note that the counting function of the common
zeros of Pl(λ) and Ql+1(λ), if any, is S(r, λ), because Pl(λ) and Ql+1(λ) are
relatively prime and the coefficients are rational functions.

Since N(r,∞;F ) = O(log r) = S(r, f) = S(r, λ), we see from (3.15) that
N(r, 0;Ql+1(λ)) = S(r, λ). Also by (3.9) we know that N(r,∞;λ) = S(r, f) =
S(r, λ). So by Lemma 2.6 we get

Ql+1(λ) = (λ+
a0(z)

l + 1
)l+1,(3.16)

where a0(z) is the coefficient of λl in Ql+1(λ).
If a0(z) 6≡ 0, then by Lemma 2.7 we obtain

T (r, λ) ≤ N(r, 0;λ) +N(r,∞;λ) +N(r,−a0(z)

l + 1
;λ) + S(r, λ)

= N(r, 0;Ql+1(λ)) + S(r, λ)

= S(r, λ),

a contradiction. Therefore a0(z) ≡ 0 and we get from (3.15) and (3.16)

F =
Pl(λ)

λl+1
.(3.17)

Differentiating (3.17) we obtain F (1) = d1
λP

(1)
l (λ)−(l+1)Pl(λ)

λl+1 , where d1 = λ(1)

λ

and T (r, d1) = O(N(r, 0;λ) + N(r,∞;λ)) + m(r, d1) = S(r, f) + S(r, λ) =
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S(r, λ). So by Lemma 2.3 we have

T (r, F (1)) = (l + 1− p)T (r, λ) + S(r, λ)(3.18)

for some integer p, 0 ≤ p ≤ l.
Again since F (1) = λF + b, where b = a − a(1) 6≡ 0, we get from (3.17)

F (1) = Pl(λ)
λl + b and so by Lemma 2.3 we have

T (r, F (1)) = (l − p)T (r, λ) + S(r, λ),(3.19)

where p is same as in (3.18). Now from (3.18) and (3.19) we get T (r, λ) =
S(r, λ), a contradiction.

Next we suppose that n = 1 and a1(z) ≡ 1. Then we consider

Φ =
(a− L(1)(a))(a− L(a))− (a− L(a))(L(1) − L(1)(a))

f − a
.

Since in this case L = f (1), we get

Φ =
(a− a(2))(f (1) − a(1))− (a− a(1))(f (2) − a(2))

f − a

=
(a− a(2))F (1) − bF (2)

F
.(3.20)

By the hypothesis we get T (r,Φ) = S(r, f). Using (3.8), (3.10), (3.11) and
(3.20) we get

(3.21) {Φ + bλ2 + (α1b− a+ a(2))λ}F + b(a(2) − a+ β1λ+ b(1)) ≡ 0.

Following the similar argument of the preceding case and using (3.21) we
can show that m(r, λ) = S(r, f). So by (3.9) we have T (r, λ) = S(r, f).

Step 5. Since T (r, λ) = S(r, f), we see that T (r, λk) + T (r, µk) = S(r, f)
for k = 1, 2, . . ., where λk and µk are defined in (3.8). Now

L =

n∑
k=1

akf
(k) =

n∑
k=1

akF
(k) + L(a)

= (

n∑
k=1

akλk)F +

n∑
k=1

akµk + L(a) = ξF + η, say.(3.22)

But since ak(z)(k = 1, 2, . . . , n) are rational functions and f is a transcendental
entire function so T (r, ξ) + T (r, η) = O(log r) = S(r, f). Differentiating (3.22)
we get

L(1) = ξ(1)F + ξF (1) + η(1).(3.23)

Let z1 be a zero of F = f−a such that z1 6∈ A∪B. Then from (3.22) and (3.23)
we get a(z1)− η(z1) = 0 and ξ(z1)(a(z1)− a(1)(z1)) + η(1)(z1)− a(z1) = 0.

If a(z)− η(z) 6≡ 0, we get

N(r, 0; f − a) ≤ NA∪B(r, 0; f − a) +N(r, 0; a− η) + S(r, f)

= S(r, f),
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which contradicts (3.2).
Therefore

a(z) ≡ η(z).(3.24)

Again if ξ(z)(a(z)− a(1)(z)) + η(1)(z)− a(z) 6≡ 0, we get

N(r, 0; f − a) ≤ NA∪B(r, 0; f − a)

+N(r, 0; ξ(z)(a(z)− a(1)(z)) + η(1)(z)− a(z)) + S(r, f)

= S(r, f),

which contradicts (3.2).
Therefore

ξ(z)(a(z)− a(1)(z)) + η(1)(z)− a(z) ≡ 0.(3.25)

Since a is a polynomial so a(z) 6≡ a(1)(z), from (3.24) and (3.25) we get ξ(z) ≡ 1.
Hence from (3.22) and (3.24) we get L ≡ F + a ≡ f .

Step 6. Set

τ =
(a− a(1))(f (2) − a(2))− (a− a(2))(f (1) − a(1))

f − a
.(3.26)

By the lemma of logarithmic derivative, we have m(r, τ) = S(r, f) and also
N(r, τ) ≤ N(2(r, a; f) + NA∪B(r, a; f) + N(r,∞; a) = O(log r). Since f is a
transcendental entire function so, T (r, τ) = S(r, f). From (3.7) we get

F (1) = b+ λF.(3.27)

Differentiating (3.27) and using (3.27) we get

(3.28) F (2) = b(1) + λ(1)F + λF (1) = b(1) + λb+ (λ(1) + λ2)F.

Now we rewrite (3.26) in the following form

τ =
bF (2) − (b+ b(1))F (1)

F
.(3.29)

By (3.29) we have

bF (2) − (b+ b(1))F (1) − τF = 0.(3.30)

Then by (3.27), (3.28) and (3.30) we have

{(λ(1) + λ2)b− (b+ b(1))λ− τ}F = b2(1− λ).(3.31)

If (λ(1) + λ2)b− (b+ b(1))λ− τ 6≡ 0, then from (3.31) we get

F = − b2λ− b2

bλ2 + bd1λ− (b+ b(1))λ− τ
,(3.32)

where d1 = λ(1)

λ and T (r, d1) = O(N(r, 0;λ)+N(r,∞;λ))+m(r, d1) = S(r, f)+
S(r, λ) = S(r, λ). From (3.32) we see that F is a rational function in λ,
which can be made irreducible. Following the similar argument of Step 4 and
using (3.32) we get T (r, λ) = S(r, λ), which is a contradiction. Therefore
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(λ(1) + λ2)b− (b+ b(1))λ− τ ≡ 0. Now since (λ(1) + λ2)b− (b+ b(1))λ− τ ≡ 0

and b 6≡ 0 then by (3.31) we deduce that λ ≡ 1, but λ = f(1)−a
f−a , hence we get

f ≡ f (1). This completes the proof of the theorem. �
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