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RELATIVE MULTIFRACTAL SPECTRUM

Najmeddine Attia

Abstract. We obtain a relation between generalized Hausdorff and pack-

ing multifractal premeasures and generalized Hausdorff and packing mul-

tifractal measures. As an application, we study a general formalism for
the multifractal analysis of one probability measure with respect to an

other.

1. Introduction

Multifractal theory was first introduced by Mandelbrot in [11, 12] as a de-
scription of measure arising in turbulance. Given a finite measure µ on Rn,
n ≥ 1, we define the local dimension or the pointwise Hölder exponent of µ at
x, when the limit exists, by

αµ(x) = lim
r→0

logµ(Bx(r))

log r
,

where Bx(r) denote the closed ball of center x and radius r.
The level set of the local dimension of µ contains crucial information on the

geometrical properties of µ. The aim of multifractal analysis of a measure is to
relate the Hausdorff and packing dimensions of these levels sets to the Legendre
transform of some concave function [1, 2, 6, 13].

Cole introduced in [8] a general formalism for the multifractal analysis of one
probability measure µ with respect to an other measure ν. More specifically,
he calculated, for α ≥ 0, the size of the set

E(α) =
{
x ∈ suppµ ∩ supp ν; lim

r→0

logµ(Bx(r))

log ν(Bx(r))
= α

}
,

where suppµ is the topologic support of µ. These sets were first introduced by
Billingsley in [5] and studied in the setting of symbolic dynamics by Cajar in
[7]. In several recent papers many authors have begun to discuss the idea of
performing multifractal analysis with respect to an arbitrary reference measure
[3, 9, 10, 14]. The special case when ν is the Lebesgue measure was studied
by Olsen in [13] and he computes the Hausdorff and packing dimensions of
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E(α). Later, Ben Nasr, Bhouri and Heurteaux in [4] developed a necessary
and sufficient condition for the validity of the multifractal formalism.

In this paper, we obtain a relation between generalized Hausdorff (resp.

packing) multifractal premeasure Hq,tµ,ν (resp. Pq,tµ,ν ) and generalized Hausdorff

(resp. packing) multifractal measure Hq,tµ,ν (resp. Pq,tµ,ν). In particular, we give
a sufficient condition about the validity of the multifractal formalism which
extends the result of the sufficient condition in [8].

2. Preliminaries

2.1. Generalized packing and Hausdorff measures

Fix an integer n ≥ 1 and denote by P(Rn) the family of Borel probability
measures on Rn. We define, for q ∈ R, the function ϕq : [0,+∞)→ [0,+∞] by

ϕq(x) =


∞ for x = 0
xq for x > 0

}
for q < 0,

1 for q = 0,
0 for x = 0
xq for x > 0

}
for q > 0.

Consider two measures µ and ν of P(Rn) and two real numbers q and t. We
suppose that Sµ,ν = suppµ ∩ supp ν 6= ∅. For any subset E of Sµ,ν , we define

Pq,tµ,ν,δ(E) =

{
sup

∑
i ϕq

(
µ(Bxi(ri))

)
ϕt
(
ν(Bxi(ri))

)
if E 6= ∅,

0 if E = ∅,

where the supremum is taken over all centered δ-packing of E. We also define

Pq,tµ,ν(E) = inf
δ>0
Pq,tµ,ν,δ(E) and Pq,tµ,ν(E) = inf

E⊂
⋃
i Ei

∑
i

Pq,tµ,ν(Ei).

Pq,tµ,ν is called the generalized packing measure relatively to µ and ν. In a
similar way we define

Hq,tµ,ν,δ(E) =

{
inf
∑
i ϕq

(
µ(Bxi(ri))

)
ϕt
(
ν(Bxi(ri))

)
if E 6= ∅,

0 if E = ∅,

where the infinimum is taken over all centered δ-covering of E. Also define

Hq,tµ,ν(E) = sup
δ>0
Hq,tµ,ν,δ(E) and Hq,tµ,ν(E) = sup

F⊆E
Hq,tµ,ν(F ).

Hq,tµ,ν is called the generalized Hausdorff measure relatively to µ and ν.

The functions Hq,tµ,ν and Pq,tµ,ν are metric outer measures and are, thus, mea-
sures on the Borel family of subsets of Rn. An important feature of the Haus-

dorff and packing measures is that Pq,tµ,ν ≤ P
q,t

µ,ν and there exists an integer

ξ ∈ N, such that Hq,tµ,ν ≤ ξPq,tµ,ν . For more details about these measures, the
reader can see [8].
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As with generalized Hausdorff and packing measures, we can define, for any
subset E of Sµ,ν and any real q,

dim
q

µ,ν(E) = sup
{
t, Hq,tµ,ν(E) =∞

}
= inf

{
t, Hq,tµ,ν(E) = 0

}
,

dimq
µ,ν(E) = sup

{
t, Hq,tµ,ν(E) =∞

}
= inf

{
t, Hq,tµ,ν(E) = 0

}
,

Dimq
µ,ν(E) = sup

{
t, Pq,tµ,ν(E) =∞

}
= inf

{
t, Pq,tµ,ν(E) = 0

}
,

∆q
µ,ν(E) = sup

{
t, Pq,tµ,ν(E) =∞

}
= inf

{
t, Pq,tµ,ν(E) = 0

}
.

Coming back to the definition, we can see obviously, for t > 0, that

H0,t

µ,ν = Htν , H0,t
µ,ν = Htν , P0,t

µ,ν = Ptν and P0,t

µ,ν = Ptν .

Hence, we denote ν-pre-Hausdorff, ν-Hausdorff, ν-packing and ν-pre-packing
dimension by dimν ,dimν ,Dimν and ∆ν respectively, then, for E ⊂ Sµ,ν , we
have

dimν(E) = dim
0

µ,ν(E), dimν(E) = dim0
µ,ν(E)

and

Dimν(E) = Dim0
µ,ν(E), ∆ν(E) = dim0

µ,ν(E).

We can see immediately that the dimensions defined above satisfy

dim
q

µ,ν(E) ≤ dimq
µ,ν(E) ≤ Dimq

µ,ν(E) ≤ ∆q
µ,ν(E).

Next, we define the multifractal functions

Θµ,ν(q) = dim
q

µ,ν(Sµ,ν),

bµ,ν(q) = dimq
µ,ν(Sµ,ν),

Bµ,ν(q) = Dimq
µ,ν(Sµ,ν),

Λµ,ν(q) = ∆q
µ,ν(Sµ,ν).

For µ ∈ P(Rn) and a > 0, write

Pa(µ) = lim sup
r↘0

sup
x∈suppµ

µ(Bx(ar))

µ(Bx(r))
and dµ(a) = lim inf

r→0
inf

x∈suppµ

µ(Bx(ar))

µ(Bx(r))
.

We recall that in [13], it was proved that(
Pa(µ) <∞ for some a > 1

)
if and only if

(
Pa(µ) <∞ for all a > 1

)
.

Also, define the family PD(Rn) of doubling probability measures on Rn, by

PD(Rn) =
{
µ ∈ P(Rn) |Pa(µ) <∞ for some a > 1

}
.

Obviously, the set PD(Rn) is independent of a and we have (see [15]) that

µ ∈ PD(Rn) if and only if dµ(1−) = lim
a→1−

dµ(a) > 0.
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Finally, if f : R → R is a real-valued function, let f∗ : R → [−∞,+∞] denote
the following Legendre transform of

f∗(x) = inf
x∈R

(
xy + f(y)

)
.

2.2. Relative multifractal analysis

Let us define, for µ and ν ∈ P(Rn),

aµ,ν = sup
q>0
−bµ,ν(q)

q
; aµ,ν = inf

q<0
−bµ,ν(q)

q
.

Recall the level set E(α) introduced in the introduction. Cole in [8] proved the
upper bound of generalizes Hausdorff and packing dimension of this set. More
precisely he get the following result.

Theorem 1. Let µ, ν ∈ P(Rn) and α ≥ 0.

(1) If α ∈ (aµ,ν , aµ,ν), then

dimν(E(α)) ≤ b∗µ,ν(α) and Dimν(E(α)) ≤ B∗µ,ν(α).

(2) If α ∈ R∗+\[aµ,ν , aµ,ν ], then dimν(E(α)) = Dimν(E(α)) = 0.

3. Relations of multifractals measures

Let µ, ν in P(Rn) and q, t in R. Without loss of generality, we suppose that
Sµ,ν 6= ∅. In general case, we only know that, for all set E

Hq,tµ,ν(E) ≤ Hq,tµ,ν(E) and Pq,tµ,ν(E) ≤ Pq,tµ,ν(E).

In this section, we are interested in the others inequalities. This result will be
used to obtain a relative multifractal formalism which will be discussed in the
next section.

Theorem 2. Let µ, ν ∈ PD(Rn). Then, for all E ⊂ Rn, for all q, t ∈ R, there
exists a constant c > 0 which depends on q and t such that

cHq,tµ,ν(E) ≤ Hq,tµ,ν(E) ≤ Hq,tµ,ν(E).

Proof. Let δ > 0, F ⊂ E and Ω = {B(xi, ri)}i is a centered δ-covering of E.
We set

Ω′ = {Bxi(ri); Bxi(ri) ∈ Ω and Bxi(ri) ∩ F 6= ∅}.
For all Bxi(ri) ∈ Ω′, let yi ∈ Bxi(ri) ∩ F . Then, Bxi(ri) ⊂ Byi(2ri) and
Λ =

{
Byi(2ri)

}
is a 2δ-covering of F .

(1) If q ≤ 0 and t ≤ 0, then∑
Bxi (ri)∈Ω

µ
(
Bxi(ri)

)q
ν
(
Bxi(ri)

)t ≥ ∑
Bxi (ri)∈Ω′

µ
(
Bxi(ri)

)q
ν
(
Bxi(ri)

)t
≥

∑
Byi (2ri)∈Λ

µ
(
Byi(2ri)

)q
ν
(
Byi(2ri)

)t
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when we have used the fact that

µ
(
Bxi(ri)

)q ≥ µ(Byi(2ri))q and ν
(
Bxi(ri)

)t ≥ ν(Byi(2ri))t.
Hence

Hq,tµ,ν,δ(E) ≥ Hq,tµ,ν,2δ(F ).

Letting δ → 0 we get

Hq,tµ,ν(E) ≥ Hq,tµ,ν(F ),

and we conclude since F is arbitrary.
(2) If q > 0, t > 0 and µ, ν ∈ PD(Rn), then∑

Bxi (ri)∈Ω

µ
(
Bxi(ri)

)q
ν
(
Bxi(ri)

)t
≥

∑
Bxi (ri)∈Ω′

µ
(
Bxi(ri)

)q
ν
(
Bxi(ri)

)t
≥ c−2q

1 c−2t
2

∑
Bxi (ri)∈Ω′

µ
(
Bxi(4ri)

)q
ν
(
Bxi(4ri)

)t
≥ c−2q

1 c−2t
2

∑
Byi (2ri)∈Λ

µ
(
Byi(2ri)

)q
ν
(
Byi(2ri)

)t
when we have used the fact that

c2q1 µ
(
Bxi(ri)

)q ≥ µ(Bxi(4ri))q and c2t2 ν
(
Bxi(ri)

)t ≥ ν(Bxi(4ri))t.
Hence

Hq,tµ,ν,δ(E) ≥ c−2q
1 c−2t

2 Hq,tµ,ν,2δ(F ).

Letting δ → 0 we get

Hq,tµ,ν(E) ≥ c−2q
1 c−2t

2 Hq,tµ,ν(F ),

and we conclude since F is arbitrary.
(3) If q > 0, t ≤ 0 and µ ∈ PD(Rn), then the proof is similar and we get

c = c−2q
1 .

(4) If q ≤ 0, t > 0 and ν ∈ PD(Rn), then the proof is similar and we get
c = c−2t

2 . �

Similarly, we will give a relation between generalized packing multifractal

premeasure Pq,tµ,ν and generalized packing multifractal measure Pq,tµ,ν . First we
start with the following result.

Proposition 1. Let E be the closure of E ⊂ Sµ,ν . Then

(1) for q ≤ 0 and t ≤ 0, we have Pq,tµ,ν(E) = Pq,tµ,ν(E),

(2) for q ≥ 0 and t ≥ 0, we have dµ(1−)qdν(1−)tPq,tµ,ν(E) ≤ Pq,tµ,ν(E) ≤
Pq,tµ,ν(E),

(3) for q ≤ 0 and t ≥ 0, we have dν(1−)tPq,tµ,ν(E) ≤ Pq,tµ,ν(E) ≤ Pq,tµ,ν(E),



464 N. ATTIA

(4) for q ≥ 0 and t ≤ 0, we have dµ(1−)qPq,tµ,ν(E) ≤ Pq,tµ,ν(E) ≤ Pq,tµ,ν(E).

Proof. Obviously, for all E ⊂ Sµ,ν and q, t ∈ R, we have Pq,tµ,ν(E) ≤ Pq,tµ,ν(E).

Fix δ > 0 and η ∈ (0, 1). Let {Bxi(ri)}i be a centred δ-packing of E. Then,
there exists {Byi((1− η)ri)}i a centred δ-packing of E such that

(3.1) Byi((1− η)ri) ⊂ Bxi(ri) ⊂ Byi((1 + η)ri).

From the definition of Pq,tµ,ν,δ, we have

Pq,tµ,ν,δ(E) ≥
∑
i

µ
(
Byi((1− η)ri)

)q
ν
(
Byi((1− η)ri)

)t
.

(1) If q ≤ 0 and t ≤ 0 we have

Pq,tµ,ν,δ(E) ≥
∑
i

µ
(
Bxi(ri)

)q
ν
(
Bxi(ri)

)t
,

which yields Pq,tµ,ν,δ(E) ≥ Pq,tµ,ν,δ(E) and so Pq,tµ,ν(E) ≥ Pq,tµ,ν(E).
(2) If q ≥ 0 and t ≥ 0 we have

Pq,tµ,ν,δ(E) ≥
∑
i

µ
(
Byi((1− η))ri)

)q
ν
(
Byi((1− η)ri)

)t
.

Notice that, from (3.1), for each i, we have

µ
(
Byi((1− η)ri)

)
=
µ
(
Byi((1− η)ri)

)
µ
(
Byi((1 + η)ri)

)µ(Byi((1 + η)ri)
)

≥
(

inf
0<r≤δ

inf
y∈supp µ

µ
(
Byi((1− η)ri)

)
µ
(
Byi((1 + η)ri)

))µ(Bxi(ri)).
Similarly, we have

ν
(
Byi((1− η)ri)

)
≥
(

inf
0<r≤δ

inf
y∈supp ν

ν
(
Byi((1− η)ri)

)
ν
(
Byi((1 + η)ri)

))ν(Bxi(ri)).
Which yields, by letting δ → 0 and η → 0,

Pq,tµ,ν,δ(E) ≥ dµ(1−)qdν(1−)tPq,tµ,ν(E).

The other cases are similar. �

Corollary 1. Let µ, ν ∈ PD(Rn) and q ∈ R. Then, for all subset E ⊂ Rn we
have

dim
q

µ,ν(E) = dimq
µ,ν(E).

In particular, we get Θµ,ν(q) = bµ,ν(q).

Theorem 3. Let E be a compact subset of Sµ,ν such that Pq,tµ,ν(E) <∞.
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(1) For q ≤ 0, we have

Pq,tµ,ν(E) ≥

{
Pq,tµ,ν(E) if t ≤ 0,

dν(1−)2tPq,tµ,ν(E) if t > 0 and ν ∈ PD(E).

(2) For q > 0, we have

Pq,tµ,ν(E) ≥

{
dν(1−)2tPq,tµ,ν(E) if t ≤ 0 and µ ∈ PD(E),

dµ(1−)2qdν(1−)2tPq,tµ,ν(E) if t > 0 and µ, ν ∈ PD(E).

Proof. For ε > 0 and F is a compact subset of E, let Fε be the open ε-
neighborhood of F . Obviously we have

a := inf
ε>0
Pq,tµ,ν(Fε ∩ E) <∞.

Let us announced this two lemmas, the first one can be found in [15] and the
second will be proved in the end of this section.

Lemma 1. For w > 0, there exist ε, δ ∈ R∗+, p ∈ N and
{
Bxi(ri)

}p
i=1

a δ-
packing of Fε ∩ E such that

(3.2) a− w ≤
p∑
i=1

µ
(
Bxi(ri)

)q
ν
(
Bxi(ri)

)t ≤ Pq,tµ,ν,δ(Fε ∩ E) ≤ a+ 2w.

Moreover there exist, for all i ∈ {1, . . . , p}, yi ∈ F and r′i, r
′′
i ≥ 0 such that

r′i + r′′i = ri and
{
Byi(r

′
i), r

′
i > 0

}
is a δ-packing of F.

In addition, there exists a constant c(q, t) ∈ R+,

(3.3)
∑
i,r′′i >0

µ
(
Bxi(r

′′
i )
)q
ν
(
Bxi(r

′′
i )
)t
≤ c(q, t)w.

Lemma 2.

(3.4) Pq,tµ,ν(F ) ≥ dµ(1−)qa, (t < 0),

and

(3.5) Pq,tµ,ν(F ) ≥ dµ(1−)qdν(1−)ta, (t > 0, ν ∈ PD(E)).

Now we will give the proof of Theorem 3 for q > 0, t > 0 and µ, ν ∈ PD(E).
The others cases are similar.

Let (Fi)i be any sequence of subsets of E such that E ⊂ ∪iFi. Let w be
given arbitrarily. By inequality (3.5), for each i there exists an open set θi with
F i ⊂ θi such that

(3.6) Pq,tµ,ν(F i) ≥ dµ(1−1)qdν(1−1)tPq,tµ,ν(θi ∩ E)− w

2i
.
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Since E is compact and E ⊂ ∪iθi, there exists an integer N such that E ⊂
∪Ni=1θi. From Proposition 1 and the inequality (3.6) it follows that

dµ(1−1)2qdν(1−1)2tPq,tµ,ν(E) ≤ dµ(1−1)2qdν(1−1)2t
N∑
i=1

Pq,tµ,ν(θi ∩ E)

≤ dµ(1−1)qdν(1−1)t
[ N∑
i=1

Pq,tµ,ν(Fi) + w
]

≤
N∑
i=1

Pq,tµ,ν(Fi) + dµ(1−1)qdν(1−1)tw.

Letting w → 0 we get

dµ(1−1)2qdν(1−1)2tPq,tµ,ν(E) ≤ inf
E⊂∪iFi

N∑
i=1

Pq,tµ,ν(Fi) = Pq,tµ,ν(E).
�

Corollary 2. Let µ, ν ∈ PD(Rn) and q ∈ R. Then, for all compact E ⊂ Sµ,ν
we have

Dimq
µ,ν(E) = ∆q

µ,ν(E).

In particular, if Sµ,ν is compact, we get Bµ,ν(q) = Λµ,ν(q).

Proof of Lemma 2. Recall the notation and the definition in Lemma 1. Under

the assumption of Theorem 3: Pq,tµ,ν(E) <∞ we get, for q ≤ 0, that t ≥ 0.
(1) Case q ≤ 0 and ν ∈ PD(E).

Pq,tµ,ν,δ(F ) ≥
∑
i:r′i>0

µ
(
Byi(r

′
i)
)q
ν
(
Byi(r

′
i)
)t

≥
∑

i:r′′i <
ri
2

µ
(
Byi(r

′
i)
)q
ν
(
Byi(r

′
i)
)t

≥
∑

i:r′′i <
ri
2

µ
(
Bxi(ri)

)q
ν
(
Bxi(ri)

)t(ν(Byi(r
′
i)

ν(Bxi(ri)

)t
since q ≤ 0 and r′i < ri

≥
∑

i:r′′i <
ri
2

µ
(
Bxi(ri)

)q
ν
(
Bxi(ri)

)t(ν(Byi(ri/2)

ν(Bxi(
3ri
2 )

)t
≥
(

inf
0<r≤δ

inf
x∈E

ν(Bx( r3 )

ν(Bx(r)

)t ∑
i:r′′i <

ri
2

µ
(
Bxi(ri)

)q
ν
(
Bxi(ri)

)t
.

In addition, for q ≤ 0, we have, for δ small enough,∑
i:r′′i ≥

ri
2

µ
(
Bxi(ri)

)q
ν
(
Bxi(ri)

)t
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≤
∑

i:r′′i ≥
ri
2

µ
(
Bxi(r

′′
i )
)q
ν
(
Bxi(r

′′
i )
)t( ν(Bxi(ri)

ν(Bxi(
ri
2 )

)t
≤

∑
i:r′′i ≥

ri
2

µ
(
Bxi(r

′′
i )
)q
ν
(
Bxi(r

′′
i )
)t(

sup
0≤r≤δ

sup
x∈E

ν(Bx(2r)

ν(Bx(r)

)t
≤ ct1

∑
i:r′′i ≥

ri
2

µ
(
Bxi(r

′′
i )
)q
ν
(
Bxi(r

′′
i )
)t
,

where C1 is the constant in the doubling condition. Then, from the fact that∑
i:r′′i <

ri
2

µ
(
Bxi(ri)

)q
ν
(
Bxi(ri)

)t
≥

p∑
i=1

µ
(
Bxi(ri)

)q
ν
(
Bxi(ri)

)t − ∑
i:ri≥

ri
2

µ
(
Bxi(ri)

)q
ν
(
Bxi(ri)

)t
,

if δ → 0 we have

Pq,tµ,ν(F ) ≥ dν(1−1)t(a− w − ct1c(q, t)w).

Letting w → 0 we get Pq,tµ,ν(F ) ≥ dν(1−1)ta.
(2) Case q > 0, t ≤ 0 and µ ∈ PD(E). This case is similar to the preview

case.
(3) Case q > 0, t > 0 and µ, ν ∈ PD(E).

Pq,tµ,ν,δ(F )

≥
∑
i:r′i>0

µ
(
Byi(r

′
i)
)q
ν
(
Byi(r

′
i)
)t

≥
∑

i:r′′i <
ri
2

µ
(
Byi(r

′
i)
)q
ν
(
Byi(r

′
i)
)t

≥
∑

i:r′′i <
ri
2

µ
(
Bxi(ri)

)q
ν
(
Bxi(ri)

)t(µ(Byi(r
′
i)

µ(Bxi(ri)

)q(ν(Byi(r
′
i)

ν(Bxi(ri)

)t
≥

∑
i:r′′i <

ri
2

µ
(
Bxi(ri)

)q
ν
(
Bxi(ri)

)t( µ(Byi(ri/2)

µ(Byi(3ri/2)

)q( ν(Byi(ri/2)

ν(Byi(3ri/2)

)t
≥
(

inf
0<r≤δ

inf
x∈E

µ(Bx( r3 )

µ(Bx(r)

)q(
inf

0<r≤δ
inf
x∈E

ν(Bx( r3 )

ν(Bx(r)

)t∑
i:r′′i <

ri
2

µ
(
Bxi(ri)

)q
ν
(
Bxi(ri)

)t
.

Finally, since∑
i:r′′i <

ri
2

µ
(
Bxi(ri)

)q
ν
(
Bxi(ri)

)t
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=

p∑
i=1

µ
(
Bxi(ri)

)q
ν
(
Bxi(ri)

)t − ∑
i:r′′i ≥

ri
2

µ
(
Bxi(ri)

)q
ν
(
Bxi(ri)

)t
and, for δ small enough,∑

i:r′′i ≥
ri
2

µ
(
Bxi(ri)

)q
ν
(
Bxi(ri)

)t ≤ ct1cq2 ∑
i:r′′i ≥

ri
2

µ
(
Bxi(r

′′
i )
)q
ν
(
Bxi(r

′′
i )
)t
,

we get, by Lemma 1, if δ → 0

Pq,tµ,ν(F ) ≥ dµ(1−1)qdν(1−1)t(a− w − ct1c
q
2c(q, t)w).

Letting w → 0 we get the result. �

4. Relative multifractal spectrum

Let µ, ν in PD(Rn) such that Sµ,ν is a compact set. We will start by com-
puting the ν-Hausdorff and ν-packing dimensions of the set E(α) and then,
Corollary 3, give the validity of multifractal analysis:

Θµ,ν = bµ,ν = Bµ,ν = Λµ,ν .

Theorem 4. Suppose that bµ,ν is differentiable at q and set α(q) = −b′µ,ν(q),

then, provided that Θ∗µ,ν(α(q)) ≥ 0 and Hq,Θµ,ν(q)
µ,ν (E(α(q))) > 0, we have

dimν E(α(q)) = Θ∗µ,ν(α(q)) = b∗µ,ν(α(q)).

Proof. Since µ, ν in PD(Rn), then, from Corollary 1, we have Θµ,ν = bµ,ν . In

particular our assumption implies that Hq,bµ,ν(q)
µ,ν (E(α(q))) > 0 and we deduce

the result from Theorem 2.10 in [8]. �

Remark 1. For q ∈ R, we have Θµ,ν(q) ≤ bµ,ν(q). ThenHq,Θµ,ν(q)
µ,ν (E(α(q))) > 0

does not implies that Hq,bµ,ν(q)
µ,ν (E(α(q))) > 0. Hence, if µ, ν in PD(Rn), the

preview theorem improves Cole’s result established in [8] (Theorem 2.10).

Theorem 5. Let q ∈ R such that Pq,Bµ,ν(q)

µ,ν (Sµ,ν) < ∞. Suppose that Bµ,ν is
differentiable at q and set α(q) = −B′µ,ν(q), then, provided that B∗µ,ν(α(q)) ≥ 0

and Pq,Bµ,ν(q)
µ,ν (E(α(q))) > 0, we have

Dimν E(α(q)) = B∗µ,ν(α(q)) = Λ∗µ,ν(α(q)).

Proof. It follow from Corollary 2, that Bµ,ν = Λµ,ν and we deduce the result
from Theorem 2.11 in [8]. �

Corollary 3. Suppose that Λµ,ν is differentiable at q and set α(q) = −Λ′µ,ν(q),

then, provided that Θ∗µ,ν(α(q)) ≥ 0 and Hq,Λµ,ν(q)
µ,ν (Sµ,ν) > 0, we have

dimν E(α(q)) = Dimν E(α(q)) = Θ∗µ,ν(α(q))

= b∗µ,ν(α(q)) = B∗µ,ν(α(q)) = Λ∗µ,ν(α(q)).
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Proof. From the definition of generalized Hausdorff multifractal premeasure,

the assumption Hq,Λµ,ν(q)
µ,ν (Sµ,ν) > 0 implies that Λµ,ν(q) ≤ bµ,ν(q) so we have

the equality. In addition, since µ, ν in PD(Rn), we get Θµ,ν = bµ,ν . Finally,

we only have to prove, according to Theorem 4, that Hq,Λµ,ν(q)
µ,ν (E(α(q))) > 0

or Hq,Λµ,ν(q)
µ,ν

(
Sµ,ν\E(α(q))

)
= 0. Since µ, ν ∈ PD(Rn) then, according to

Theorem 4, we only have to prove that

Hq,Λµ,ν(q)

µ,ν

(
Sµ,ν\E(α(q))

)
= 0.

For α ∈ R∗+, let us introduce the sets

Fα =
{
x ∈ Sµ,ν , lim sup

r→0

log(µ(Bx(r))

log(ν(Bx(r))
> α

}
and

Fα =
{
x ∈ Sµ,ν , lim inf

r→0

log(µ(Bx(r))

log(ν(Bx(r))
< α

}
.

We only have to prove that

(4.1) Hq,Λµ,ν(q)

µ,ν (Fα) = 0 , ∀α > α(q),

(4.2) Hq,Λµ,ν(q)

µ,ν (Fα) = 0 , ∀α < α(q).

In deed,

0 ≤ Hq,Λµ,ν(q)

µ,ν (Sµ,ν\E(α(q))

≤ Hq,Λµ,ν(q)

µ,ν (Fα(q)) +Hq,Λµ,ν(q)

µ,ν (Fα(q))

≤ Hq,Λµ,ν(q)

µ,ν (
⋃

α<α(q)

Fα) +Hq,Λµ,ν(q)

µ,ν (
⋃

α>α(q)

Fα)

≤
∑
α

Hq,Λµ,ν(q)

µ,ν (Fα) +Hq,Λµ,ν(q)

µ,ν (Fα) = 0.

Let us come back to prove the inequality (4.1) (the proof for (4.2) is similar).
If x ∈ Fα, let δ > 0 we can find 0 < rx < δ such that

(4.3) µ(Bx(rx)) < ν(Bx(rx))α.

The family (Bx(rx))x∈Fα is then a centered δ-covering of Fα. Using Besicov-
itch’s Covering Theorem, we can construct ξ finite or countable sub-families

(Bx1j
(r1j))j , . . . , (Bxξj (rξj))j

such that each Fα ⊆
ξ⋃
i=1

⋃
j

Bxij (rij) and (Bxij (rij))j is a δ-packing of Fα.

From the inequality (4.3), we get, for t > 0,

µ(Bxij (rij))
qν(Bxij (rij))

Λµ,ν(q) ≤ µ(Bxij (rij))
q−tν(Bxij (rij))

Λµ,ν(q)+αt
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and then

Hq,Λµ,ν(q)

µ,ν (Fα) ≤ ξPq−t,Λµ,ν(q)+αt

µ,ν (Fα).

Since α > −Λ′µ,ν(q), we may choose t > 0 such that Λ(q − t) > Λ(q) + αt
thereby

Pq−t,Λµ,ν(q)+αt

µ,ν (Sµ,ν) = 0. �

Computing the Hausdorff and packing dimension of the set E(α), respec-
tively dimE(α) and DimE(α), is difficult in general, but we can estimate from
bellow Hausdorff and packing dimension of this level set. Indeed, we can decom-
pose the set E(α) according to the ν-local dimension of theirs points and then
calculate the size of the subset of E(α) whose points have ν-local dimension β.
This idea can be found in [8, 14]. We set, for α, β ≥ 0,

E(α, β) =
{
x ∈ Sµν | lim

r→0

logµ(Bx(r))

log ν(Bx(r))
= α; lim

r→0

log ν(Bx(r))

log r
= β

}
.

Theorem 6. Let q ∈ R such that bµ,ν is differentiable at q. Set α(q) = −b′µ,ν(q)
and

I =
{
β ≥ 0 | Hq,Θµ,ν(q)

µ,ν (E(α(q), β)) > 0
}
.

Suppose that Θ∗µ,ν(α(q)) ≥ 0 then

dimE(α(q)) ≥ sup
β∈I

β ·Θ∗µ,ν(α(q)).

Proof. It’s clear that E(α(q), β) ⊂ E(α(q)). Then it’s enough to prove that
dimE(α(q), β) = β · Θ∗µ,ν(α(q)). From Corollary 2, we have Θµ,ν = bµ,ν . In

particular our assumption implies that Hq,bµ,ν(q)
µ,ν (E(α(q))) > 0 and we deduce

the result from Theorem 2.14 in [8]. �

Theorem 7. Let q ∈ R such that Bµ,ν is differentiable at q. Set α(q) =
−B′µ,ν(q) and

J =
{
β ≥ 0 | Pq,Bµ,ν(q)

µ,ν (E(α(q), β)) > 0
}
.

Suppose that B∗µ,ν(α(q)) ≥ 0 then

DimE(α(q)) ≥ sup
β∈J

β ·B∗µ,ν(α(q)).

Proof. By Theorem 3, the assumption Pq,Bµ,ν(q)

µ,ν (E(α(q), β)) > 0 implies that

Pq,Bµ,ν(q)
µ,ν (E(α(q), β)) > 0

and we deduce the result from Theorem 2.15 in [8]. �

Remark 2. Theorems 6 and 7 improve Theorems 2.14 and 2.15 established in
[8], if µ, ν in PD(Rn).
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