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RELATIVE MULTIFRACTAL SPECTRUM

NAJMEDDINE ATTIA

ABSTRACT. We obtain a relation between generalized Hausdorff and pack-
ing multifractal premeasures and generalized Hausdorff and packing mul-
tifractal measures. As an application, we study a general formalism for
the multifractal analysis of one probability measure with respect to an
other.

1. Introduction

Multifractal theory was first introduced by Mandelbrot in [11,12] as a de-
scription of measure arising in turbulance. Given a finite measure p on R™,
n > 1, we define the local dimension or the pointwise Holder exponent of y at
x, when the limit exists, by

)

au(‘r) — lim log p(Bx(r))
r—0 log r
where B, (r) denote the closed ball of center = and radius 7.

The level set of the local dimension of i contains crucial information on the
geometrical properties of y. The aim of multifractal analysis of a measure is to
relate the Hausdorff and packing dimensions of these levels sets to the Legendre
transform of some concave function [1,2,6,13].

Cole introduced in [8] a general formalism for the multifractal analysis of one
probability measure p with respect to an other measure v. More specifically,
he calculated, for o > 0, the size of the set

oy log pu(Ba(r)
E(a) = {a: € supp p N supp v; 7ll_r)% m = a},
where supp p is the topologic support of . These sets were first introduced by
Billingsley in [5] and studied in the setting of symbolic dynamics by Cajar in
[7]. In several recent papers many authors have begun to discuss the idea of
performing multifractal analysis with respect to an arbitrary reference measure
[3,9,10,14]. The special case when v is the Lebesgue measure was studied
by Olsen in [13] and he computes the Hausdorff and packing dimensions of
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E(«). Later, Ben Nasr, Bhouri and Heurteaux in [4] developed a necessary
and sufficient condition for the validity of the multifractal formalism.

In this paper, we obtain a relation between generalized Hausdorff (resp.
packing) multifractal premeasure ﬁi’i (resp. ﬁfj, ) and generalized Hausdorff
(resp. packing) multifractal measure H%?, (resp. Pgy,). In particular, we give
a sufficient condition about the validity of the multifractal formalism which
extends the result of the sufficient condition in [8].

2. Preliminaries
2.1. Generalized packing and Hausdorff measures

Fix an integer n > 1 and denote by P(R™) the family of Borel probability
measures on R"”. We define, for ¢ € R, the function ¢, : [0, +00) — [0, 4+00] by

oo for z=0
z4 for >0 } for ¢ <0,
pq(x) = 1 for ¢=0,

0 for z=0

z? for m>0} for ¢ >0.

Consider two measures p and v of P(R™) and two real numbers ¢ and ¢t. We
suppose that S, , = supp N suppv # 0. For any subset E of S, ,,, we define

fz’j/ﬁ(E) _ { (S)up Zz <pq(M(Bwi(Ti)))Wt(V(Ba;i(ri))) i gig:

where the supremum is taken over all centered J-packing of E. We also define

ﬁq’t( E) = mfPIU,(;( ) and Pgif,( = inf ZP

¥ §>0 ECU, B

Pl‘f:fj is called the generalized packing measure relatively to p and v. In a
similar way we define

ﬁiy,tv,t?(E) :{ iOHfZi qu(N(Bxi(ri)))@t<V(Bri(Ti))) j gig:

where the infinimum is taken over all centered d-covering of E. Also define

ﬂ:ﬁ’fy(m—wpma( ) and HLL(E) = sup H(F).
6>0 FCE

q,t
HEY
The functions ’Hzt and P,‘{ 't are metric outer measures and are, thus, mea-

sures on the Borel family of subsets of R”. An 1mp0rtant feature of the Haus-

is called the generalized Hausdorff measure relatively to p and v.

dorff and packing measures is that ngf, < PMJ and there exists an integer
£ € N, such that HZ’fy < f’Pﬂﬁ,. For more details about these measures, the
reader can see [8].
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As with generalized Hausdorff and packing measures, we can define, for any
subset F of S, , and any real g,

Mi,y E) =sup {t, "

sV

(E) oo} = inf {t, ﬁzty(E) = 0},
oo} - inf{t, W (B) = 0},
oo} - inf{t, PUL(E) = o},

E) =sup {t, fity(E) = oo} = inf {t7 ﬁzf;,(E) = 0}.

E) = sup {t, HE (E)

221

(
(

Dim? (E) = sup {t7 Pl (E)
(

Coming back to the definition, we can see obviously, for ¢t > 0, that
—0,t =t —0,t ==t
H,,=H, M), =H, Py,=P, and P,, =P,
Hence, we denote v-pre-Hausdorff, v-Hausdorff, v-packing and v-pre-packing
dimension by dim,,dim,,Dim, and A, respectively, then, for £ C S, ,, we
have

dim, (E) = dim,, (E), dim,(E) = dim’,(E)
and
Dim, (E) = Dim|, ,(E), A,(E)=dim), ,(E).
We can see immediately that the dimensions defined above satisfy
dimy, , (E) < dim{ ,(E) < Dim?, ,(E) < Al (E).
Next, we define the multifractal functions
@u,u(q) = RZ,V(S#,V)V
b/L,V(Q) = dimz,u(sﬂ,v)7
Byuv(q) = Dimy , (Spv),
Au,u(Q) = AZ,V(SM,V)'
For p € P(R™) and a > 0, write

Pa() = limsup sup “B2O) g g (@) = timin e AP0
™0 xEsuppp ,LL(B»L(’I“)) r—0 xEsSupp p ,U,(BI(’/‘))

We recall that in [13], it was proved that
(Pa(,u) < oo for some a > 1) if and only if (Pa(,u) < oo forall a> 1).
Also, define the family Pp(R™) of doubling probability measures on R", by
Po(R™) = {p € P(R") | Pa(p) < oo for some a > 1}.
Obviously, the set Pp(R"™) is independent of a and we have (see [15]) that
p € Pp(R™) if and only if d,(17) = al_iglﬁ d,(a) > 0.
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Finally, if f : R — R is a real-valued function, let f* : R — [—o00, +00] denote
the following Legendre transform of

(@) = inf (zy + f(y))-
2.2. Relative multifractal analysis
Let us define, for p and v € P(R"),

b b
0, = sup— pv(4). Gy — inf — v (9)
’ >0 q q<0 q

Recall the level set E(«) introduced in the introduction. Cole in [8] proved the
upper bound of generalizes Hausdorff and packing dimension of this set. More
precisely he get the following result.
Theorem 1. Let u,v € P(R") and o > 0.
(1) If a€(ay,,,auy), then
dim, (E(a)) < b, (@) and Dim,(E(a)) < B}, ().
(2) If a € Ri\[ay, ,,@up], then dim, (E(a)) = Dim, (E(a)) = 0.

3. Relations of multifractals measures

Let p,v in P(R™) and ¢,t in R. Without loss of generality, we suppose that
Sy, # 0. In general case, we only know that, for all set F

HUL(E) <HYL(E) and POL(E) <PL(E).

In this section, we are interested in the others inequalities. This result will be
used to obtain a relative multifractal formalism which will be discussed in the
next section.

Theorem 2. Let p,v € Pp(R™). Then, for all E C R™, for all q,t € R, there
exists a constant ¢ > 0 which depends on q and t such that

HIL(E) < H'(B) < HEL(E).

Proof. Let 6 > 0, F C E and Q = {B(x;,7;)}; is a centered d-covering of E.
We set
Q' ={B,,(r;); Ba,(r;) €Q and B, (r;)NF #0}.
For all B,,(r;) € @, let y; € By, (r;) N F. Then, By, (r;) C By, (2r;) and
A={B,(2r;)}isa 25 covering of F'.
(1) If ¢ <0 and ¢t < 0, then

S w(Be ) w(Be () = D" u(Br () v (Ba, (1)

By, (ri)€Q By, (ri)eQ

> Z M(Byl(er))qu(Byi (27“i))

Byi (2“)61\

t
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when we have used the fact that

M(Bxi(ri))q 2 :u(Byl(er))q and V(BJL@(T’L))

t

> V(Byi(Qri))t.
Hence
Hovs(E) = Hys, 05(F):
Letting § — 0 we get
() 2 H, (F),

and we conclude since F' is arbitrary.
(2)If g >0,t>0and u,v € Pp(R™), then

> (B, (i) v (B, (i)'

B:z,i (Ti)eﬂ
> Z :U'(Brz (ri))qV(Bmi (Ti))t
Ba, (ri) e
> e Z 11(Bg, (413)) v (B, (4ri))t

B, (ri)e
> e 3T u(By(20) v(By,(2r:)
By, (2r;)€A
when we have used the fact that
chu(Bg;i (ri))q > p(By, (4Ti))q and  3'v(By, (r:))

Hence

t t

> v(By, (4r4)) .

279t —2q —
Hu,u76(E) > 1 q 2tHu,u 26( )
Letting § — 0 we get

HIL

8%

(B) > o1 ey, (F),

and we conclude since F' is arbitrary.
(3)If ¢ > 0,t <0 and u € Pp(R™), then the proof is similar and we get

—2q

c=c "
(4) If ¢ <0,t >0 and v € Pp(R™), then the proof is similar and we get

—21
c=cy . (I

Similarly, we will give a relation between generalized packing multifractal

premeasure 77 et , and generalized packing multifractal measure ngf,. First we
start with the followmg result.

Proposition 1. Let E be the closure of E C S,,,,. Then

(1) for ¢ <0 and t <0, we have PH y( ) = ﬁZ’L(E),
(2) for ¢ > 0 and t > 0, we have d,,(1 )qd,,(l_)th’;(F) < thI,(E) <
P (E),

(3) for g <0 andt >0, we have dl,(lf)tpﬂ V( ) < PZ’V( ) < 73;1[1,(7)
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(4) for >0 and t <0, we have d,(17)7Py,(E) <Py, (E) < Py, (E).

Proof. Obviously, for all E C S, and ¢,t € R, we have ﬁZtL,(E) < fzty(E)
Fix § > 0 and 1 € (0,1). Let {By,(r:)}:; be a centred d-packing of E. Then,
there exists {By,((1 —n)r;)}; a centred é-packing of E such that

(3.1) By, (1 =n)ri) C Ba,(ri) C By, ((1+n)rs).

q,t

From the definition of fﬂ’w;,

we have
—q,t q t
Piovs(B) 2 > u(By (1 =myr)) v (B (1 = mro)) -
(1) If ¢ <0 and ¢ < 0 we have

Pia(B) 2 3 (B (r0) v (Bas(r))

which yields fi”tyﬁ (E) > ﬁi’ﬁ,ﬁ (E) and so ﬁztl,(E) > ﬁzt,,(E)
(2) If ¢ > 0 and ¢t > 0 we have
—q,t q t
P s(B) 2 > u(Bu (1 =m)r)) v(By (1 =n)r))
Notice that, from (3.1), for each i, we have
1(By, (1 = n)ry))
1(By, (1 =mn)ri)) = 1(By, (1 +mn)r:)
(5, ) 11(By, (1 +n)rs)) (B, )
B, ((1— f
> ( inf inf ,u( w(L=mr ))),U(BzL(Tz))
0<r<§ yEsupp p ,u(Byi((l + n)ri))
Similarly, we have
. . V(By'((l —U)Ti))
B, (1 —n)r;)) > f f . B..(r;)).
0= (o, 3 S
Which yields, by letting § — 0 and n — 0,
— 7t _ _ — 7t —
Pvs(E) > du(17)d, (17)'P)(E).
The other cases are similar. O

Corollary 1. Let u,v € Pp(R™) and g € R. Then, for all subset E C R™ we
have

ey )
dim,, ,(F) = dim? ,(E).
In particular, we get ©,,,(q) = by, (q).

Theorem 3. Let E be a compact subset of S, such that fZ’ty(E) < 00.
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(1) For q <0, we have
—a.t .
put(g) > PZ&E& if <0,
P T du(17)2P, L (E) if t>0 and v e Pp(E).
(2) For ¢ >0, we have

d,(17)2Py,, (E) f =0 and p€Pp(E),

Piu(E) > 2
)= {du(l—)QQdy(l‘)”PZ’,’l(D if t>0 and pv € Pp(E).

Proof. For € > 0 and F is a compact subset of FE, let F. be the open e-
neighborhood of F'. Obviously we have

a:= ig%fi’)ty(ﬂ NE) < oco.

Let us announced this two lemmas, the first one can be found in [15] and the
second will be proved in the end of this section.

Lemma 1. For w > 0, there exist ¢,0 € R%,p € N and {Bm(ri) le a d-
packing of F. N E such that

P
(3.2) a—w< Z 1t(Bg, (1)) v (B, (Ti))t < fi’ﬁ,’é(ﬂ NE) <a+ 2w.
i=1
Moreover there exist, for alli € {1,...,p}, y; € F and r,r] > 0 such that
ri4+r! =r and {Byi (rh), ri > O} is a 0-packing of F.

In addition, there exists a constant c(q,t) € Ry,

(33) S (B ) v (Bat)) < gty

i,/ >0
Lemma 2.
(3.4) PU(F) > d,(17)%,  (t<0),
and
(3.5) PU(F) > d,(17)d,(17)'a, (t>0, vePp(E)).

Now we will give the proof of Theorem 3 for ¢ > 0, ¢t > 0 and p,v € Pp(FE).
The others cases are similar.

Let (F;); be any sequence of subsets of E such that E C U;F;. Let w be
given arbitrarily. By inequality (3.5), for each ¢ there exists an open set 6; with
Fi C 6; such that

w

(3.6 Pron(Fo) 2 du (17, (17) P, (6:1 B) = .
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Since F is compact and E C U;6;, there exists an integer N such that F C
UN_,0;. From Proposition 1 and the inequality (3.6) it follows that

d,(171%d, (172 P0 (E) < d,(171)%d, (1~ WZP (6N E)

2

< du (1711, (171! [ Yo Pl (F) + w

N - =1
ZPZ’V d,(1719d, (17 1) w.

Letting w — 0 we get

N

—1\2¢ —1\2t5%t Bt q,t
TP < i SIPILR) = PEUE).

Corollary 2. Let p,v € Pp(R"™) and g € R. Then, for all compact E C S, ,,
we have

Dim}, ,(E) = A, ,(E).
In particular, if Sy, is compact, we get By, ,(q) = A, u(q).
Proof of Lemma 2. Recall the notation and the definition in Lemma 1. Under

the assumption of Theorem 3: ﬁzty(E) < oo we get, for ¢ <0, that ¢t > 0.
(1) Case ¢ <0 and v € Pp(E).

Prs(F) > " u(By, () v (By, ()

t

;>0
> 30 (B l) (B )’
’ 2 q t[V By r{ t
> X ) (B ) (S5S)

since ¢<0 and 7} <r;

=2 M(Bm(n))q’/(Bm(”))t(WY

<1 T 2
vry <5

r

—~
w

> ( inf inf ))t Z M(Bxi(m))qV(Bmi(?”i))t.

*<0 <szcE V(B
<r<sz€E v(Bg(r) ey

In addition, for ¢ < 0, we have, for § small enough,

(B (1)) " (B (1)

I
2
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N\t (Y Bﬂ% i)\
o . V(B (2r)\?
< ) N(Bz (r))"v(Ba, (1)) (Oi‘jggiggu((l%f(i)))
Z )'v(Bo, ()",

where C7 is the constant in the doubling condition. Then, from the fact that

ST w(Ba, (1)) v (Ba, (7))

i:T;’<%
p
> ZM(Bzi (Ti))qV(Bxi (h‘))t - Z 1(Ba, (Ti))qV(Bzi (ri))t,
=1 iy >
if § — 0 we have

PL(F) > dy (17 (a — w — cielg, tw).

BV

Letting w — 0 we get thI,(F) >d, (17 a.

(2) Case ¢ > 0,t <0 and u € Pp(E). This case is similar to the preview
case.

(3) Case ¢ >0,t >0 and u,v € Pp(E).

P s(F)
S By, () v (By, (r})'

27, >0

v

v
=
—
Sy
N
—
sﬁ\
-
~—
2
N
—
Sy
<
—
sﬁ\
~
~—
o~

> T a0t (g ()
S ) Zu“(B“”"'(”))q”(Bzi(”))t( By, ( 37:1//22 )q(:((By ST;l//Qz )
> (,inf, jnf Ziﬁiiéf)q(&%;g V(B § )Z Z* 1 (Ba, (r2)) v (B (r))

Finally, since
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= Z/J(BZEL (Ti))ql/(Bwi (Ti))t - M(Bm (ri)>qV(B91i (ri))t

and, for § small enough,
t t
Z /"(Bii (Ti))qV(BIi (Ti)) < Cicg /’(’(Bﬂii (frg/))qy(Bwi (T;/» ’
i)/ > il >
we get, by Lemma 1, if 6 — 0
=q,t _ _
P (F) = d(171)7d, (171 (a — w — ¢icfe(q, t)w).
Letting w — 0 we get the result. O

4. Relative multifractal spectrum

Let p,v in Pp(R™) such that S, , is a compact set. We will start by com-
puting the v-Hausdorff and v-packing dimensions of the set F(«) and then,
Corollary 3, give the validity of multifractal analysis:

Oy = bw’ =B, = AW/
Theorem 4. Suppose that b, is dijj‘erentiable at ¢ and set a(q) = —b;, ,(q),
then, provided that ©% ,(a(q)) > 0 and H} o ”(q)(E(a(q))) > 0, we have
dim, E(a(q)) = GZ,V(Q(CI)) = by (a(q)).
Proof. Since p,v in Pp(R™), then, from Corollary 1, we have ©,,, = b, .. In

particular our assumption implies that ’HZ’ v ”(Q)( E(a(q))) > 0 and we deduce

the result from Theorem 2.10 in [8]. O

Remark 1. For g € R, we have ©,, ,(¢) < b, (q). Then 1}, S )(E(a(q))) >0

does not implies that H.,! by “(Q)(E(a(q))) > 0. Hence, if y,v in Pp(R™), the
preview theorem improves Cole’s result established in [8] (Theorem 2.10).

Theorem 5. Let ¢ € R such that Pq’B“ "(q)(S,W) < 00. Suppose that By, , is
differentiable at q and set a(q) = —B'7 (q), then, provided that B}, ,(a(q)) > 0

and Pq’,f"””(q)(E(a(q))) > 0, we have
Dim, E(a(q)) = B, ,(a(q)) = A, (a(q))-

Proof. It follow from Corollary 2, that B, , = A, , and we deduce the result
from Theorem 2.11 in [8]. O

Corollary 3. Suppose that A, , is dzﬂerentiable at q and set a(q) = —A}, ,(q),
then, provided that 7, ,(a(q)) > 0 and M}y oG )<Su,11) > 0, we have
dim, E(a(q)) = Dim, E(a(q)) = 6}, ,(a(q))
=0, ,(alq)) = B}, ,(a(q)) = A}, , (a(q))-



RELATIVE MULTIFRACTAL SPECTRUM 469

Proof. From the definition of generalized Hausdorff multifractal premeasure,

the assumption 7—Lq’ o "(q)(Sﬂvy) > 0 implies that A, ,(¢) < b, (g) so we have
the equality. In addition, since p,v in Pp(R™), we get ©,, = b, ,. Finally,

we only have to prove, according to Theorem 4, that H/ B (@) (E(a(q)) >0

or ’H,Z’,,,“ (@) (Sup\E(a(g))) = 0. Since p,v € Pp(R") then, according to
Theorem 4, we only have to prove that

779N 0,0 (Q)
HZ,I/H ! (Su,V\E(a(Q))) =0.
For a € R%, let us introduce the sets
= . log(p(Bx(r))
F,= Suu, limsup ——=
o {x <€ o, I?félp log(v(By(1)) - a}

and

log(u(Bx(r)) _
F,= {x € Sy, hI;ﬂJ(I)lf Tog(v(Ba(r)) < }

We only have to prove that

(4.1) O D(F,) =0, Va > alg),
(4.2) HE - D(E) =0, Va < alg).
In deed,

A (
0<H,, P (S, \E(al0))
70N (@) 279N, (@)
< Hu,l/ (F(x(q)) + H ( a(q))
Sﬁ%AM,V(Q)( U Ea)"’HqAM U(Q)( U Fa)
a<a(q) a>a(q)

<ZHQA“” Fo)+HA " DF,) =0,

Let us come back to prove the inequality (4.1) (the proof for (4.2) is similar).
If v € Fy, let § >0 we can find 0 < r,, < § such that

(4.3) (B (re)) < v(Bz(re))”.

The family (By(rz)),c7, is then a centered d-covering of F,. Using Besicov-
itch’s Covering Theorem, we can construct £ finite or countable sub-families

(Biclj (le))j’ Tt (Bxgj (Tﬁj))j

13

such that each F, C U UB% (rij) and (Bg,, (rij)); is a é-packing of F.
i=1 j

From the inequality (4.3), we get, for ¢ > 0,

((Ba,, (ri)) W (Ba,, (rij)) D < u(By,, (rig)) ™ w( By, (1ig)) Mo (@O0t
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and then
H D (Fa) < Pl M N E,),

"% v

Since o > —AJ, (), we may choose ¢t > 0 such that A(g —t) > A(g) + at
thereby

*q_thu,u(Q)""at

Py (Sup) =0. O

Computing the Hausdorff and packing dimension of the set E(«), respec-
tively dim E(«) and Dim FE(«), is difficult in general, but we can estimate from
bellow Hausdorff and packing dimension of this level set. Indeed, we can decom-
pose the set E(a) according to the v-local dimension of theirs points and then
calculate the size of the subset of E(«) whose points have v-local dimension .
This idea can be found in [8,14]. We set, for a, 5 > 0,

D)) _ -y, VB _ g

Bed) =7 € Sur| I by~ B Togs

Theorem 6. Let g € R such thatb,,, is differentiable at q. Set a(q) = —b), ,(q)
and

1={8=0] HyS(E(a(a), 8) > 0}.
Suppose that ©7, ,(a(q)) > 0 then
dim E(a(q)) = sup 5 - ©}, ,(a(q)).
Bel

Proof. Tt’s clear that E(a(q),8) C E(a(g)). Then it’s enough to prove that
dim E(a(q), 8) = B - ©% (alq)). From Corollary 2, we have ©,,,, = b, ,. In

v
particular our assumption implies that HZ’}L‘L’”(q)(E(a(q))) > 0 and we deduce
the result from Theorem 2.14 in [8]. O

Theorem 7. Let ¢ € R such that B, , is differentiable at q. Set a(q) =
fB;W(q) and

J={8=0] Py (B(a(),8) > 0}.
Suppose that B}, ,(a(q)) > 0 then
Dim E(a(q)) > sup 8- B;, ,(a(q)).
BeJ

Proof. By Theorem 3, the assumption fﬁ’f“’”(q)(E(a(q), B)) > 0 implies that
» B,
P @ (B(alg), 5) > 0
and we deduce the result from Theorem 2.15 in [8]. O

Remark 2. Theorems 6 and 7 improve Theorems 2.14 and 2.15 established in
[8], if p, v in Pp(R™).
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