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Ⅰ. Introduction

 

Obstacle avoidance algorithms facilitate 

autonomous vehicles or robots to navigate 

without colliding with obstacles and could be 

divided into two categories: those employed in 

known environments and those used in 

unknown environments. A robot can be defined 

as a programmable, self-controlled device 

consisting of electronic, electrical, or 

mechanical units. In this paper, a small robot is 

defined as a robot whose size and storage are 

limited. There are numerous algorithms that 

are used in known environments, such as 

(combinations of) Configuration Space Method 

[1], Dijkstra’s Shortest Path Algorithm [2], 

Visibility Graph Representation [3], Voronoi 

Diagrams [3] and Minkowski Sum [4], just to 

name a few. These algorithms are often used 

alongside path smoothing methods, including 

the Cubic Splines or the Post Processing 

method, in order to smooth the generated path 

such that the robot can physically track the 

path defined.

Needless to say, it is much more 

challenging to develop an algorithm for use in 

unknown or partially unknown environments 

than that for use in known environments. This 

paper suggests one such algorithm, i.e. random 

obstacle avoidance (ROA) algorithm, which 

could be used in real-time for small robots or 

vehicles to avoid unknown obstacles that 

appear randomly on the path and to 

subsequently return to a new optimal path 

towards the goal. 

Common uses of path-planning algorithms 

for unknown environments are in robot 

navigation and flight formation amongst others. 

It has been an important research topic over 

the past few decades and is still an important 

and active research topic. Recent work 

includes the methods reported in [5-7]. In this 

study, it is intended that the algorithm be kept 

as simple as possible for ease of 

implementation potentially due to hardware 

limitations associated with small mobile robots. 
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Hence, substantial simplification is assumed, 

such as working on just first integrals and 

relying heavily on sensory inputs. As a result, 

despite apparent correlations with other 

path-planning algorithms, no direct comparisons 

can be drawn given their complexity. 

For known or partially known environments, 

an optimal path needs to be pre-evaluated or 

predetermined, and one such algorithm that 

combines Minkowski Sum (to provide safe 

margins), Visibility Graph Representation (VGR) 

(for generating all available paths), a modified 

version of Dijkstra’s Algorithm (to find the 

shortest path), and a path smoothing algorithm 

that employs the cardinal splines [8] is 

proposed. In a known environment, the 

combined algorithm, known as Known Obstacle 

Avoidance (KOA) algorithm, is sufficient, but in 

a partially known environment the KOA needs 

to be used alongside the ROA algorithm, also 

proposed in this paper.

The KOA and ROA are introduced in 

Sections Ⅱ and Section Ⅳ, respectively. In 

Section Ⅲ, basic navigation concepts required 

for simulating a robot navigating in unknown or 

partially known environments are described. 

The robot navigating through various 

environments with the algorithms incorporated 

is simulated in Matlab®, through a specially 

developed Graphic User Interface (GUI) in 

Section Ⅴ. In Section Ⅵ, conclusions are 

drawn. 

The main contributions of this paper can be 

summarised as introduction of the ROA 

algorithm for small robots that is simple, easy 

to implement, fast, and efficient for use in 

unknown and partially unknown environments, 

introduction of efficient combination of existing 

algorithms (the KOA algorithm) for predefining 

an optimal path in partially known 

environments, and interaction of the two, i.e. 

the KOA and ROA algorithms, in parallel.

Ⅱ. Known obstacle avoidance

 

In partially known environments, an optimal 

Fig. 1 Minkowski sum applied to the robot

path can be predefined taking into account 

information given but without considering 

random or unknown obstacles that may appear 

on the way to the goal. The same applies to 

completely known environments, but this topic 

is not covered in this paper as it is clearly 

less challenging.

To determine an optimal path in partially 

known environments, a combination of 

Minkowski Sum, VGR, Dijkstra’s algorithm, and 

a path smoothing algorithm that uses cardinal 

splines is utilised. Minkowski Sum provides a 

safe margin, the VGR generates all available 

paths, Dijkstra’s Algorithm is modified here to 

find the shortest path among the available 

paths generated using the VGR, and a path 

smoothing algorithm that employs the cardinal 

splines smooths the generated path such that 

the robot can physically follow the generated 

path.

In more detail, Minkowski Sum simplifies 

the problem of a polygonal robot navigating 

through obstacles by converting it to the 

problem of a point object navigating through 

enlarged obstacles instead. The obstacles are 

enlarged, taking into account potentially the 

worst case orientation of the robot in close 

proximity of obstacles. For example, as 

depicted in Fig. 1, the rectangular robot is 

surrounded by a circle that is large enough 

merely to cover the robot. The circle 

subsequently traverses the edges of the 

obstacle to generate the enlarged area of the 

obstacle according to Minkowski Sum. 
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Fig. 2 Visibility graph representation and a 

modified version of Dijkstra’s Algorithm [9]

Fig. 3 Effect of tension in cardinal spline [8]

As depicted in Fig. 2, the VGR generates all 

available paths from the starting point (blue 

circle) to the goal (green circle). Dijkstra’s 

algorithm finds the shortest path amongst all 

the available paths as depicted in green in the 

same figure. Dijkstra’s algorithm is modified to 

find the path that is shortest in distance rather 

than in time. The original Dijkstra’s algorithm 

takes into account the number of turns that the 

robot needs to take before the robot reaches 

the goal. However, since the robot is assumed 

to travel at a low constant speed at this stage, 

the algorithm is modified to select the path 

that is shortest in distance instead.

Finally to smooth the generated path, a path 

smoothing algorithm that employs the concept 

of cardinal splines is utilised. For instance, if 

the path from A to E through B, C, and D in 

blue/dashed in Fig. 3 is an optimal path 

generated using the combined algorithm 

described above, then cardinal splines 

subsequently smooth the optimal path yielding 

the red path, which would be clearly easier for 

the robot to track. For further details on 

cardinal splines, readers are referred to [8].

Fig. 4 Robot structure

The combination of Minkowski Sum, VGR, 

Dijkstra's algorithm, and a path smoothing 

algorithm that uses the cardinal splines is 

referred to as KOA algorithm as previously 

mentioned. In partially known environments, 

unknown or random obstacles could also be 

present on the path that has been determined 

using the KOA algorithm. In such situations, 

the KOA algorithm is used alongside the ROA 

algorithm, reported in Section IV, to avoid both 

known and unknown (or random) obstacles.

Ⅲ. Basic navigation concepts

ROA algorithms allow robots to navigate 

without colliding with random or unknown 

obstacles. Before a ROA algorithm is 

introduced in the following section, this section 

describes the structure of the robot and 

sensors to allow the robot to avoid random 

obstacles. Mathematics (e.g. geometry) required 

for the robot equipped with sensors depicted 

in Fig. 4 to navigate around obstacles to reach 

the goal is also described. As depicted in the 

figure, the robot is assumed to be rectangular 

and includes a centre and front marker. The 

sensors A, B, C, and D (pentagons) provide a 

safety margin as indicated in blue/dashed.

Orientation  of the robot is defined as the 

angle that the central longitudinal axis of the 

robot makes with the x-axis as demonstrated 

in Fig. 5. The robot depicted in Fig. 4 is 

therefore at the orientation of  (or initial 

orientation). At any moment in time, steering 
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Fig. 5 Orientation and heading angle

of the robot

angle  is defined as the difference in robot 

orientation at time  and , i.e.    . 

Heading  is defined as the angle that the line, 

connecting the "centre marker" and the target, 

makes with the x-axis as shown in Fig. 5. 

Length (or distance) between the front and 

centre markers of the robot  (depicted in red 

in Fig. 4) is defined as

    (1)

where  and    are the coordinates 

of the centre and front markers, respectively. 

The angle that the central longitudinal axis 

of the robot makes with the y-axis  in Fig. 6 

is calculated as

  


 


(2)

where   denotes steering angle. 

Turning radius  is defined as

 cos


(3)

The centre coordinate of the turning circle 

  is given by

  cos 


 (4)

  sin



 (5)

where  and    respectively denote the 

Fig. 6 Turning circle

Fig. 7 Robot turning

initial orientation and new or updated 

orientation as illustrated in Fig. 7.

At this stage, it is assumed that the robot 

travels at a constant speed. Therefore, 

distance traversed by the robot  is simply 

speed  multiplied by time , and thus the 

following relationship holds (refer to Fig. 7):




 


(6)

where  denotes the circumference.

The equations above allow the robot 
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position after each time interval ∆ when 

steering angle  is zero (i.e. the robot is 

moving straight) and when  is nonzero to be 

calculated as follows [9]:

If  

    (7)


  

cos (8)

   
sin (9)

If ≠

 
 

 (10)


 

cos
 (11)

  sin
 (12)

In order to draw the robot at each time 

interval during simulation with the correct 

orientation, the following rotational matrix is 

employed.




 












cos sin

sin cos











 (13)

where 
   is the initial 

position/coordinate of the robot's centre 

marker when    .

The following equations are employed to 

calculate heading with respect to obstacles, 

walls or the goal.

If  ≥

  cos 
  (14)

If  

  cos 
  (15)

where  denotes the difference between the 

coordinates of the obstacle, walls or goal and 

the coordinate of the robot.  denotes the 

length between robot centre and the obstacle, 

wall or goal.

The robot takes appropriate action when an 

obstacle or wall is detected within the safety 

margin. As previously mentioned, it is assumed 

that there are 4 sensing points. Increasing the 

number of sensing points would improve the 

accuracy of the algorithm. However, it comes 

at the cost of increased computational effort, 

and 4 sensing points strikes a good balance 

between accuracy and simulation time at this 

stage.

Ⅳ. Random obstacle avoidance

Recall that cardinal spline is used for path 

smoothing in Section II. In this section, the 

concept of cardinal splines is exploited 

differently being part of the ROA algorithm as 

described in the following steps:

Step 1: Predetermine an optimal path

In completely unknown environments, we 

assume that there is no obstacle present and 

find an optimal path which would simply be a 

straight line from the source (starting location) 

to the goal. In partially known environments, 

the algorithm introduced in Section II is 

employed instead to find an optimal path taking 

into account information given. This is 

demonstrated and simulated in Section V in 

more detail.

Step 2: Avoid obstacles on the path

While tracking the predefined path 

generated in Step 1, if the robot is faced with 

any random obstacles on the path, the robot 

steers away to clear the obstacles from the 

sensing range. The robot determines whether 

to turn right or left using the simple binary 

sensors A, B, C, and D shown in Fig. 3.

Moreover, if the robot encounters another 

obstacle when turning, then the sign of 

steering angle   changes. Improvement as a 

result is demonstrated in the following section 

(in Fig. 11).

Step 3: Regenerate an optimal path

When an obstacle has been cleared, a new 

optimal path is generated. It uses the concept 

of cardinal splines illustrated in Fig. 3. The 

control points are [A, A, B, C, D, E, E]
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Fig. 8 Importance of the LAP

(a) Wrongly tuned 

(b) Correctly tuned 

Fig. 9 Importance of tuning the LAP
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instead of [A, B, C, D, E] because A and E in 

[A, B, C, D, E] are only present to define the 

shapes of  and  , respectively, and the spline 

starts with B and ends with C. Using [A, A, B, 

C, D, E, E] instead, the first A and the last E 

are only present to determine the shapes of  

and  , respectively, and the spline starts with 

the second A and ends with the second last E. 

The control points for the cardinal splines for 

this study are thus [centre coordinates, centre 

coordinates, sensing point, look ahead point, 

goal, goal]. The Look Ahead Point (LAP) is 

important part of the ROA algorithm as 

explained below. 

Step 4: Find a suitable LAP

Once an obstacle has been avoided, the 

objective now is to return to an optimal path. 

To achieve this objective in a smooth manner, 

the LAP plays an important role. To find the 

LAP, the closest point on the previously 

generated optimal path from the robot's current 

position needs to be found first. Subsequently, 

some distance   towards the goal added to the 

closest point is known as the LAP.   is a 

tuning factor that takes into account the sizes 

of the robot and obstacles and complexity of 

the sensing system used.

Fig. 10 Simulator with various examples

Fig. 11 Example 1, unknown environment (clockwise)
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Fig. 12 Example 2, partially known environment (clockwise)

The importance of the LAP is illustrated in 

Fig. 8. In Fig. 8 (left), without the LAP the 

path is too sharp for the robot to follow. In 

Fig. 8 (right), the path is much smoother and 

easier for the robot to track due to presence 

of the LAP. This is the reason that the control 

points, [centre coordinates, centre coordinates, 

sensing point, LAP, goal, goal]), include the 

LAP. Note that the reason that "centre 

coordinates" and "goal" are included twice is 

explained in Step 3 above. 

If the distance between the robot and goal 

is shorter than that between the robot and 

LAP, LAP is ignored to prevent the robot from 

deviating from its path unnecessarily. 

The importance of tuning is illustrated in 

Fig. 9(a) demonstrates a situation in which   is 

too small causing the robot to orbit around the 

obstacle before it eventually reaches the goal. 

In Fig. 9(b), is tuned correctly enabling the 

robot to reach the goal more smoothly and 

efficiently.

Ⅴ. Implementation and simulations

The algorithms developed in Sections Ⅲ 

and Ⅳ are tested in specially developed 

environments using the Graphical User 

Interface (GUI) in Matlab®. As depicted in Fig. 

10, there are three different types of 

environments to choose from on the left hand 

side, namely, "Totally Known Environments", 
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Fig. 13 Example 3, partially known environment (clockwise)

"Partially Known Environments" and "Totally 

Unknown Environments". In each type, there 

are 4 different examples. One example from 

the Totally Unknown Environments and two 

examples from Partially Known Environments 

are presented here. The GUI with the initial 

screen when Example 4 from Partially Known 

Environments is selected is shown in Fig. 10.

A totally unknown environment is presented 

in example 1. In the example (Fig. 11), there 

are three unknown obstacles (red/dashed), but 

no knowledge regarding the environment is 

provided in advance. As a result, only the ROA 

algorithm introduced in Section Ⅳ is employed 

and the KOA algorithm in Section III is not 

required. Since no knowledge of the 

environment is given the initial optimal path is 

defined as a straight line from the starting 

point to the goal (or "Finish") as shown in the 

top left sub-figure. As shown in the following 

sub-figures (clockwise), it generates optimal 

paths 6 times to reach the goal. The 

regenerated paths and the corresponding LAPs 

are all displayed. It is important to note that 

when the robot encounters the first unknown 

obstacle, it turns left instead of right, thereby 

generating a more efficient path. This is due 

to the robot changing the sign of   if the robot 

encounters another obstacle when turning as 

previously mentioned in Section Ⅳ (the last 

paragraph in Step 2).

In the second example demonstrated in Fig. 

12, both known and unknown obstacles exist; 

that is, red/dashed and blue/solid rectangles 
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respectively depict unknown and known 

obstacles. The known obstacles are avoided by 

defining an optimal path as depicted in the 

figure, which is obtained using the KOA 

algorithm reported in Section Ⅱ. The green 

curve in the top left sub-figure is the optimal 

path and the yellow lines are the paths 

generated by the VGR while calculating the 

optimal path. To avoid the unknown obstacles 

(i.e. the two red/dashed rectangles), the ROA 

is also incorporated. All the paths that are 

generated during the simulation are displayed 

in the figure. It demonstrates that the robot 

successfully reaches the goal avoiding all the 

obstacles.

In example 3 (Fig. 13), similarly to example 

2, an initial optimal path is first determined to 

avoid the known obstacles (three rectangles in 

blue/solid) using the KOA algorithm. While 

tracking the path, the robot encounters an 

unknown obstacle in red/dashed. The ROA 

algorithm is in turn activated and the robot 

avoids the unknown obstacle to reach the goal 

successfully.

Ⅵ. Conclusions

An efficient combination of Minkowski Sum, 

VGR, a modified version of Dijkstra's 

Algorithm, and a path smoothing algorithm that 

employs cardinal splines (i.e. KOA algorithm) is 

employed for predefining an optimal path given 

knowledge regarding the environments. 

Moreover, a ROA algorithm to avoid random or 

unknown obstacles is reported. It breaks with 

the tradition and employs the concept of 

cardinal splines that use the LAP as one of the 

control points.

The simulation result in a totally unknown 

environment demonstrates that the ROA allows 

the robot to reach the goal without colliding 

into unknown obstacles. The simulation results 

in partially known environments illustrate that 

the ROA algorithm can be used successfully in 

addition to the KOA algorithm; that is, if the 

robot encounters an unknown obstacle while 

following an optimal path defined using the 

KOA algorithm (for avoiding known obstacles), 

the ROA algorithm becomes active and enables 

the robot to avoid the unknown obstacle to 

reach the goal. 

Taking into account the complexity of the 

proposed algorithms, the simulation results 

demonstrate that both the algorithms are 

efficient and the ROA algorithm is suitable for 

implementation on a small robot in which 

storage may be limited. For larger robots, this 

algorithm could serve as a useful basis for 

developing more sophisticated ROA algorithms. 

Implementation of the proposed algorithms 

in a real-life small robot is reserved for future 

work.
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