
대한임베디드공학회논문지 제 13권 제 2호 2018년 4월 53

ⓒ IEMEK J. Embed. Sys. Appl. 2018 Apr. 13(2) 53-63
ISSN : 1975-5066
http://dx.doi.org/10.14372/IEMEK.2018.13.2.53

Ⅰ. Introduction

Obstacle avoidance algorithms facilitate

autonomous vehicles or robots to navigate

without colliding with obstacles and could be

divided into two categories: those employed in

known environments and those used in

unknown environments. A robot can be defined

as a programmable, self-controlled device

consisting of electronic, electrical, or

mechanical units. In this paper, a small robot is

defined as a robot whose size and storage are

limited. There are numerous algorithms that

are used in known environments, such as

(combinations of) Configuration Space Method

[1], Dijkstra’s Shortest Path Algorithm [2],

Visibility Graph Representation [3], Voronoi

Diagrams [3] and Minkowski Sum [4], just to

name a few. These algorithms are often used

alongside path smoothing methods, including

the Cubic Splines or the Post Processing

method, in order to smooth the generated path

such that the robot can physically track the

path defined.

Needless to say, it is much more

challenging to develop an algorithm for use in

unknown or partially unknown environments

than that for use in known environments. This

paper suggests one such algorithm, i.e. random

obstacle avoidance (ROA) algorithm, which

could be used in real-time for small robots or

vehicles to avoid unknown obstacles that

appear randomly on the path and to

subsequently return to a new optimal path

towards the goal.

Common uses of path-planning algorithms

for unknown environments are in robot

navigation and flight formation amongst others.

It has been an important research topic over

the past few decades and is still an important

and active research topic. Recent work

includes the methods reported in [5-7]. In this

study, it is intended that the algorithm be kept

as simple as possible for ease of

implementation potentially due to hardware

limitations associated with small mobile robots.

논문 2018-13-07

Real-time Adaptive Obstacle Avoidance Algorithm

for Small Robots

Sung-ho Hur*

Abstract : A novel real-time path planning algorithm suitable for implementation on a small

mobile robot is introduced. The algorithm can be used as the basis for mapping unknown or

partially known environments and is tested in a specially developed simulation environment in

Matlab®. Simulations results are presented demonstrating that the algorithm can readily be

implemented to allow a small robot to navigate in various unknown and partially known

environments. The main characteristics of the algorithm include simplicity, ease of

implementation, speed, and efficiency, thereby being especially suitable for small robots.

Furthermore, for partially known environments, another algorithm is proposed to predefine an

optimal path taking into account information provided regarding the environment.

Keywords : Obstacle avoidance, Path planning, Robot control

*Corresponding Author (shur@knu.ac.kr)

Received: Feb. 13 2018, Revised: Feb. 26 2018,

Accepted: Feb. 27 2018.

S. Hur : Kyungpook National University

This research was supported by Kyungpook

National University Research Fund, 2017

54 Real-Time Adaptive Obstacle Avoidance Algorithm for Small Robots

Hence, substantial simplification is assumed,

such as working on just first integrals and

relying heavily on sensory inputs. As a result,

despite apparent correlations with other

path-planning algorithms, no direct comparisons

can be drawn given their complexity.

For known or partially known environments,

an optimal path needs to be pre-evaluated or

predetermined, and one such algorithm that

combines Minkowski Sum (to provide safe

margins), Visibility Graph Representation (VGR)

(for generating all available paths), a modified

version of Dijkstra’s Algorithm (to find the

shortest path), and a path smoothing algorithm

that employs the cardinal splines [8] is

proposed. In a known environment, the

combined algorithm, known as Known Obstacle

Avoidance (KOA) algorithm, is sufficient, but in

a partially known environment the KOA needs

to be used alongside the ROA algorithm, also

proposed in this paper.

The KOA and ROA are introduced in

Sections Ⅱ and Section Ⅳ, respectively. In

Section Ⅲ, basic navigation concepts required

for simulating a robot navigating in unknown or

partially known environments are described.

The robot navigating through various

environments with the algorithms incorporated

is simulated in Matlab®, through a specially

developed Graphic User Interface (GUI) in

Section Ⅴ. In Section Ⅵ, conclusions are

drawn.

The main contributions of this paper can be

summarised as introduction of the ROA

algorithm for small robots that is simple, easy

to implement, fast, and efficient for use in

unknown and partially unknown environments,

introduction of efficient combination of existing

algorithms (the KOA algorithm) for predefining

an optimal path in partially known

environments, and interaction of the two, i.e.

the KOA and ROA algorithms, in parallel.

Ⅱ. Known obstacle avoidance

In partially known environments, an optimal

Fig. 1 Minkowski sum applied to the robot

path can be predefined taking into account

information given but without considering

random or unknown obstacles that may appear

on the way to the goal. The same applies to

completely known environments, but this topic

is not covered in this paper as it is clearly

less challenging.

To determine an optimal path in partially

known environments, a combination of

Minkowski Sum, VGR, Dijkstra’s algorithm, and

a path smoothing algorithm that uses cardinal

splines is utilised. Minkowski Sum provides a

safe margin, the VGR generates all available

paths, Dijkstra’s Algorithm is modified here to

find the shortest path among the available

paths generated using the VGR, and a path

smoothing algorithm that employs the cardinal

splines smooths the generated path such that

the robot can physically follow the generated

path.

In more detail, Minkowski Sum simplifies

the problem of a polygonal robot navigating

through obstacles by converting it to the

problem of a point object navigating through

enlarged obstacles instead. The obstacles are

enlarged, taking into account potentially the

worst case orientation of the robot in close

proximity of obstacles. For example, as

depicted in Fig. 1, the rectangular robot is

surrounded by a circle that is large enough

merely to cover the robot. The circle

subsequently traverses the edges of the

obstacle to generate the enlarged area of the

obstacle according to Minkowski Sum.

대한임베디드공학회논문지 제 13권 제 2호 2018년 4월 55

Fig. 2 Visibility graph representation and a

modified version of Dijkstra’s Algorithm [9]

Fig. 3 Effect of tension in cardinal spline [8]

As depicted in Fig. 2, the VGR generates all

available paths from the starting point (blue

circle) to the goal (green circle). Dijkstra’s

algorithm finds the shortest path amongst all

the available paths as depicted in green in the

same figure. Dijkstra’s algorithm is modified to

find the path that is shortest in distance rather

than in time. The original Dijkstra’s algorithm

takes into account the number of turns that the

robot needs to take before the robot reaches

the goal. However, since the robot is assumed

to travel at a low constant speed at this stage,

the algorithm is modified to select the path

that is shortest in distance instead.

Finally to smooth the generated path, a path

smoothing algorithm that employs the concept

of cardinal splines is utilised. For instance, if

the path from A to E through B, C, and D in

blue/dashed in Fig. 3 is an optimal path

generated using the combined algorithm

described above, then cardinal splines

subsequently smooth the optimal path yielding

the red path, which would be clearly easier for

the robot to track. For further details on

cardinal splines, readers are referred to [8].

Fig. 4 Robot structure

The combination of Minkowski Sum, VGR,

Dijkstra's algorithm, and a path smoothing

algorithm that uses the cardinal splines is

referred to as KOA algorithm as previously

mentioned. In partially known environments,

unknown or random obstacles could also be

present on the path that has been determined

using the KOA algorithm. In such situations,

the KOA algorithm is used alongside the ROA

algorithm, reported in Section IV, to avoid both

known and unknown (or random) obstacles.

Ⅲ. Basic navigation concepts

ROA algorithms allow robots to navigate

without colliding with random or unknown

obstacles. Before a ROA algorithm is

introduced in the following section, this section

describes the structure of the robot and

sensors to allow the robot to avoid random

obstacles. Mathematics (e.g. geometry) required

for the robot equipped with sensors depicted

in Fig. 4 to navigate around obstacles to reach

the goal is also described. As depicted in the

figure, the robot is assumed to be rectangular

and includes a centre and front marker. The

sensors A, B, C, and D (pentagons) provide a

safety margin as indicated in blue/dashed.

Orientation of the robot is defined as the

angle that the central longitudinal axis of the

robot makes with the x-axis as demonstrated

in Fig. 5. The robot depicted in Fig. 4 is

therefore at the orientation of  (or initial

orientation). At any moment in time, steering

56 Real-Time Adaptive Obstacle Avoidance Algorithm for Small Robots

Fig. 5 Orientation and heading angle

of the robot

angle  is defined as the difference in robot

orientation at time  and , i.e.    .

Heading  is defined as the angle that the line,

connecting the "centre marker" and the target,

makes with the x-axis as shown in Fig. 5.

Length (or distance) between the front and

centre markers of the robot  (depicted in red

in Fig. 4) is defined as

    (1)

where  and    are the coordinates

of the centre and front markers, respectively.

The angle that the central longitudinal axis

of the robot makes with the y-axis  in Fig. 6

is calculated as

  


 


(2)

where  denotes steering angle.

Turning radius  is defined as

 cos


(3)

The centre coordinate of the turning circle

  is given by

  cos 


 (4)

  sin



 (5)

where  and   respectively denote the

Fig. 6 Turning circle

Fig. 7 Robot turning

initial orientation and new or updated

orientation as illustrated in Fig. 7.

At this stage, it is assumed that the robot

travels at a constant speed. Therefore,

distance traversed by the robot  is simply

speed  multiplied by time , and thus the

following relationship holds (refer to Fig. 7):




 


(6)

where  denotes the circumference.

The equations above allow the robot

대한임베디드공학회논문지 제 13권 제 2호 2018년 4월 57

position after each time interval ∆ when

steering angle  is zero (i.e. the robot is

moving straight) and when  is nonzero to be

calculated as follows [9]:

If  

    (7)


  

cos (8)

   
sin (9)

If ≠

 
 

 (10)


 

cos
 (11)

  sin
 (12)

In order to draw the robot at each time

interval during simulation with the correct

orientation, the following rotational matrix is

employed.




 












cos sin

sin cos











 (13)

where 
   is the initial

position/coordinate of the robot's centre

marker when    .

The following equations are employed to

calculate heading with respect to obstacles,

walls or the goal.

If  ≥

  cos 
  (14)

If  

  cos 
  (15)

where  denotes the difference between the

coordinates of the obstacle, walls or goal and

the coordinate of the robot.  denotes the

length between robot centre and the obstacle,

wall or goal.

The robot takes appropriate action when an

obstacle or wall is detected within the safety

margin. As previously mentioned, it is assumed

that there are 4 sensing points. Increasing the

number of sensing points would improve the

accuracy of the algorithm. However, it comes

at the cost of increased computational effort,

and 4 sensing points strikes a good balance

between accuracy and simulation time at this

stage.

Ⅳ. Random obstacle avoidance

Recall that cardinal spline is used for path

smoothing in Section II. In this section, the

concept of cardinal splines is exploited

differently being part of the ROA algorithm as

described in the following steps:

Step 1: Predetermine an optimal path

In completely unknown environments, we

assume that there is no obstacle present and

find an optimal path which would simply be a

straight line from the source (starting location)

to the goal. In partially known environments,

the algorithm introduced in Section II is

employed instead to find an optimal path taking

into account information given. This is

demonstrated and simulated in Section V in

more detail.

Step 2: Avoid obstacles on the path

While tracking the predefined path

generated in Step 1, if the robot is faced with

any random obstacles on the path, the robot

steers away to clear the obstacles from the

sensing range. The robot determines whether

to turn right or left using the simple binary

sensors A, B, C, and D shown in Fig. 3.

Moreover, if the robot encounters another

obstacle when turning, then the sign of

steering angle changes. Improvement as a

result is demonstrated in the following section

(in Fig. 11).

Step 3: Regenerate an optimal path

When an obstacle has been cleared, a new

optimal path is generated. It uses the concept

of cardinal splines illustrated in Fig. 3. The

control points are [A, A, B, C, D, E, E]

58 Real-Time Adaptive Obstacle Avoidance Algorithm for Small Robots

Fig. 8 Importance of the LAP

(a) Wrongly tuned 

(b) Correctly tuned 

Fig. 9 Importance of tuning the LAP

대한임베디드공학회논문지 제 13권 제 2호 2018년 4월 59

instead of [A, B, C, D, E] because A and E in

[A, B, C, D, E] are only present to define the

shapes of and , respectively, and the spline

starts with B and ends with C. Using [A, A, B,

C, D, E, E] instead, the first A and the last E

are only present to determine the shapes of

and , respectively, and the spline starts with

the second A and ends with the second last E.

The control points for the cardinal splines for

this study are thus [centre coordinates, centre

coordinates, sensing point, look ahead point,

goal, goal]. The Look Ahead Point (LAP) is

important part of the ROA algorithm as

explained below.

Step 4: Find a suitable LAP

Once an obstacle has been avoided, the

objective now is to return to an optimal path.

To achieve this objective in a smooth manner,

the LAP plays an important role. To find the

LAP, the closest point on the previously

generated optimal path from the robot's current

position needs to be found first. Subsequently,

some distance towards the goal added to the

closest point is known as the LAP. is a

tuning factor that takes into account the sizes

of the robot and obstacles and complexity of

the sensing system used.

Fig. 10 Simulator with various examples

Fig. 11 Example 1, unknown environment (clockwise)

60 Real-Time Adaptive Obstacle Avoidance Algorithm for Small Robots

Fig. 12 Example 2, partially known environment (clockwise)

The importance of the LAP is illustrated in

Fig. 8. In Fig. 8 (left), without the LAP the

path is too sharp for the robot to follow. In

Fig. 8 (right), the path is much smoother and

easier for the robot to track due to presence

of the LAP. This is the reason that the control

points, [centre coordinates, centre coordinates,

sensing point, LAP, goal, goal]), include the

LAP. Note that the reason that "centre

coordinates" and "goal" are included twice is

explained in Step 3 above.

If the distance between the robot and goal

is shorter than that between the robot and

LAP, LAP is ignored to prevent the robot from

deviating from its path unnecessarily.

The importance of tuning is illustrated in

Fig. 9(a) demonstrates a situation in which is

too small causing the robot to orbit around the

obstacle before it eventually reaches the goal.

In Fig. 9(b), is tuned correctly enabling the

robot to reach the goal more smoothly and

efficiently.

Ⅴ. Implementation and simulations

The algorithms developed in Sections Ⅲ

and Ⅳ are tested in specially developed

environments using the Graphical User

Interface (GUI) in Matlab®. As depicted in Fig.

10, there are three different types of

environments to choose from on the left hand

side, namely, "Totally Known Environments",

대한임베디드공학회논문지 제 13권 제 2호 2018년 4월 61

Fig. 13 Example 3, partially known environment (clockwise)

"Partially Known Environments" and "Totally

Unknown Environments". In each type, there

are 4 different examples. One example from

the Totally Unknown Environments and two

examples from Partially Known Environments

are presented here. The GUI with the initial

screen when Example 4 from Partially Known

Environments is selected is shown in Fig. 10.

A totally unknown environment is presented

in example 1. In the example (Fig. 11), there

are three unknown obstacles (red/dashed), but

no knowledge regarding the environment is

provided in advance. As a result, only the ROA

algorithm introduced in Section Ⅳ is employed

and the KOA algorithm in Section III is not

required. Since no knowledge of the

environment is given the initial optimal path is

defined as a straight line from the starting

point to the goal (or "Finish") as shown in the

top left sub-figure. As shown in the following

sub-figures (clockwise), it generates optimal

paths 6 times to reach the goal. The

regenerated paths and the corresponding LAPs

are all displayed. It is important to note that

when the robot encounters the first unknown

obstacle, it turns left instead of right, thereby

generating a more efficient path. This is due

to the robot changing the sign of if the robot

encounters another obstacle when turning as

previously mentioned in Section Ⅳ (the last

paragraph in Step 2).

In the second example demonstrated in Fig.

12, both known and unknown obstacles exist;

that is, red/dashed and blue/solid rectangles

62 Real-Time Adaptive Obstacle Avoidance Algorithm for Small Robots

respectively depict unknown and known

obstacles. The known obstacles are avoided by

defining an optimal path as depicted in the

figure, which is obtained using the KOA

algorithm reported in Section Ⅱ. The green

curve in the top left sub-figure is the optimal

path and the yellow lines are the paths

generated by the VGR while calculating the

optimal path. To avoid the unknown obstacles

(i.e. the two red/dashed rectangles), the ROA

is also incorporated. All the paths that are

generated during the simulation are displayed

in the figure. It demonstrates that the robot

successfully reaches the goal avoiding all the

obstacles.

In example 3 (Fig. 13), similarly to example

2, an initial optimal path is first determined to

avoid the known obstacles (three rectangles in

blue/solid) using the KOA algorithm. While

tracking the path, the robot encounters an

unknown obstacle in red/dashed. The ROA

algorithm is in turn activated and the robot

avoids the unknown obstacle to reach the goal

successfully.

Ⅵ. Conclusions

An efficient combination of Minkowski Sum,

VGR, a modified version of Dijkstra's

Algorithm, and a path smoothing algorithm that

employs cardinal splines (i.e. KOA algorithm) is

employed for predefining an optimal path given

knowledge regarding the environments.

Moreover, a ROA algorithm to avoid random or

unknown obstacles is reported. It breaks with

the tradition and employs the concept of

cardinal splines that use the LAP as one of the

control points.

The simulation result in a totally unknown

environment demonstrates that the ROA allows

the robot to reach the goal without colliding

into unknown obstacles. The simulation results

in partially known environments illustrate that

the ROA algorithm can be used successfully in

addition to the KOA algorithm; that is, if the

robot encounters an unknown obstacle while

following an optimal path defined using the

KOA algorithm (for avoiding known obstacles),

the ROA algorithm becomes active and enables

the robot to avoid the unknown obstacle to

reach the goal.

Taking into account the complexity of the

proposed algorithms, the simulation results

demonstrate that both the algorithms are

efficient and the ROA algorithm is suitable for

implementation on a small robot in which

storage may be limited. For larger robots, this

algorithm could serve as a useful basis for

developing more sophisticated ROA algorithms.

Implementation of the proposed algorithms

in a real-life small robot is reserved for future

work.

References

[1] J. Craig, Introduction to Robotics : Mechanics

and Control, 3rd Edition, Prentice-Hall, 2004.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest,

C. Stein, Introduction to Algorithms, 3rd

Edition, MIT Press, 2009.

[3] M. D. Berg, M. V. Kreveld, M. Overmars, O.

Schwarzkopf, Computational Geometry, 2nd

Edition, Springer-Verlag, 2000.

[4] J. O'Rourke, Computational Geometry in C,

2nd Edition, Cambridge University Press, 1994.

[5] K. Wu, T. Xi, H. Wang, “Real-time

Three-dimensional Smooth Path Planning for

Unmanned Aerial Vehicles in Completely

Unknown Cluttered Environments,"

Proceedings of Region 10 Conference, pp.

2017-2022, 2017.

[6] A. C. Hildebrandt, M. Klischat, D. Wahrmann,

R. Wittmann, F. Sygulla, P. Seiwald, D.

Rixen, T. Buschmann, “Real-Time Path

Planning in Unknown Environments for

Bipedal Robots," IEEE Robotics and

Automation Letters, Vol. 2, No. 4, pp.

1856-1863, 2017.

[7] F. Kamil, T. Hong, W. Khaksar, M.

Moghrabiah, N. Zulkifli, S. Ahmad “New

대한임베디드공학회논문지 제 13권 제 2호 2018년 4월 63

Robot Navigation Algorithm for Arbitrary

Unknown Dynamic Environments Based on

Future Prediction and Priority Behavior,"

Expert Systems with Applications, Vol. 86,

No. 15, pp. 274-291, 2017.

[8] I. J. Schoenberg, A. Sharma “Cardinal

Interpolation and Spline Functions V. The

B-splines for Cardinal Hermit Interpolation,"

Linear Algebra and its Applications, Vol. 7,

No. 1, pp. 1-42, 1973.

[9] O. Ringdahl, “Path Tracking And Obstacle

Voidance Algorithms for Autonomous Forest

Machines," Master's thesis, Umea University,

2003.

Sung-ho Hur (허 성 호)

He received the B.Eng.

degree in Electronics

and Electrical Engineering

from the University of

Glasgow, UK in 2004,

the M.Sc. degree (with

Distinction) in Electronic

and Electrical Engineering from

University of Strathclyde, UK in 2005,

and the Ph.D. degree with in Control

(within the department of Electronic and

Electrical Engineering) from University

of Strathclyde (2006-2010).

He is now an Assistant Professor, within

the School of Electronics Engineering at

Kyungpook National University.

His research interests include control,

wind energy, obstacle avoidance, and

cross-directional process.

Email: shur@knu.ac.kr

