DOI QR코드

DOI QR Code

Relationship between Electrical Characteristics and Oxygen Vacancy in Accordance with Annealing Temperature of TiO2 Thin Film

TiO2 박막의 온도에 따른 산소공공의 분포와 전기적인 특성사이의 상관성

  • Oh, Teresa (Department of Semiconductor Engineering, Cheongju University)
  • Received : 2018.01.18
  • Accepted : 2018.04.03
  • Published : 2018.04.30

Abstract

To observe the relationship between the oxygen vacancy and electrical characteristics of $TiO_2$ due to the $CO_2$ gases, the $TiO_2$ were deposited by the mixing gases of $Ar:O_2=20$ sccm:20 sccm and annealed with various temperatures. The bonding structure was changed with the annealing temperature from amorphous to crystal structure, and the oxygen vacancy was also changed with these bonding structures. The $CO_2$ gas reaction of $TiO_2$ films showed the variation in accordance with the bonding structure. The capacitance increased at the amorphous structure $TiO_2$, and the current also increased. However the oxygen vacancy decreased at this amorphous structure $TiO_2$. Because of the formation of oxygen vacancies is in inverse proportion to the amorphous structure. Moreover, the diffusion current in the depletion layer such as the amorphous structure showed the difference in accordance with the $CO_2$ gas flow rates.

본 연구는 투명산화물반도체의 전기적인 특성과 산소공공과의 관계를 알아보기 위해서 $TiO_2$ 박막을 증착하여 MIM 구조를 만들어서 전압전류 특성을 관찰하였다. 산소공공은 XPS분석으로 이루어졌으며, 커패시턴스를 측정하여 전하의 용량이 많은 곳에서 산소공공이 어떤 영향을 주는가에 대하여도 조사하였다. 열처리를 통하여 결정질구조로 변하는 $TiO_2$ 박막은 산소공공이 가장 낮은 곳에서 커패시턴스 값이 가장 높았으며, 전하의 양이 많았다. 따라서 전하의 양이 많은 $TiO_2$박막이 $CO_2$ 가스에 대하여 가장 잘 민감하게 반응하는 것을 확인하였다.

Keywords

References

  1. T. Oh, "Tunneling Condition at High Schottky Barrier and Ambipolar Transfer Characteristics in Zinc Oxide Semiconductor Thin Film Transistor," Materials Research Bulletin, vol. 77, pp.1-7, May, 2016. https://doi.org/10.1016/j.materresbull.2015.11.038
  2. X. Ma1, J. Zhang, W. Cai, H. Wang, Joshua Wilson, Qingpu Wang, Qian Xin & Aimin Song, "A Sputtered Silicon Oxide Electrolyte for High-Performance Thin-Film Transistors," Scientific Reports, vol. 7, Article number: 809, April, 2017.
  3. T. Oh and C. K. Choi, "Comparison between SiOC thin film fabricated by using plasma enhance chemical vapor deposition and $SiO_2$ thin film by using fourier transform infrared spectroscopy", Journal of the Korean Physical Society, vol. 56, pp. 1150-1155, Apr. 2010. https://doi.org/10.3938/jkps.56.1150
  4. John Robertson, Robert M. Wallace, "High-K materials and metal gates for CMOS applications," Materials Science and Engineering R, vol. 88, pp.1-41, Feb. 2015. https://doi.org/10.1016/j.mser.2014.11.001
  5. J. C. K. Lam, Maggie Y. M. Huang, Tsu Hau Ng, M. K. B. Dawood, F. Zhang, A. Du, H. Sun, Z. Shen, and Z. Mai, "Evidence of ultra-low-k dielectric material degradation and nanostructure alteration of the Cu/ultra-low-k interconnects in time-dependent dielectric breakdown failure," Applied Physics Letter, vol. 102, pp. 022908, Jan. 2013. https://doi.org/10.1063/1.4776735
  6. T. Oh, "Tunneling Phenomenon of Amorphous Indium-Gallium-Zinc-Oxide Thin Film Transistors for Flexible Display," Electronic Materials Lett, vol. 11. pp. 853-861, Sep. 2015. https://doi.org/10.1007/s13391-015-4505-3
  7. J. S. Jeon, S. H. Jo, H. J. Choi, J. T. Park, " Effects of thin-film thickness on device instability of amorphous InGaZnO junctionless transistors," Journal of the Korea Institute of Information and Communication Engineering, vol. 21, pp. 1627-1634, Sep. 2017.
  8. S.W. Tsao, et al. "Hydrogen-induced improvements in electrical characteristics of a-IGZO thin-film transistors," Solid-State Electronics, vol. 54, pp.1497-1499, Dec. 2010. https://doi.org/10.1016/j.sse.2010.08.001
  9. S. Lee, Y. S. Song, H. Kim, and S. O. Ryu, "Characterization of ALD Processed $Al_2O_3/TiO_2/Al_2O_3$ Multilayer Films for Encapsulation and Barrier of OLEDs," Journal of The Korean Society of Semiconductor & Display Technology, vol. 16, pp. 1-5, Mar. 2017.
  10. J. Maserjian, N. Zamani, "Behavior of the $Si/SiO_2$ interface observed by Fowler Nordheim tunneling," Applied Physics Letter, vol. 53, pp.559-567, Oct. 1982. https://doi.org/10.1063/1.329919
  11. T. Oh, K. S. Kim, K. M. Lee, C. K. Choi, "Generation of SiOC films by the Thermal Induction," Japanes Journal of Applied Physics, vol. 44, pp.1409-1413, Mar. 2005. https://doi.org/10.1143/JJAP.44.1409
  12. J. Maserjian, "Tunneling in thin MOS structures," Journal of Vacuum Science and Technology, vol. 11, pp.996-1003, Dec. 1974. https://doi.org/10.1116/1.1318719
  13. S. D. Ganichev, et al. "Distinction between the Poole-Frenkel and tunneling models of electric-field-stimulated carrier emission from deep levels in semiconductors," Physics Review B, vol. 61, No. 15, pp.10361-10365, Sep. 2000. https://doi.org/10.1103/PhysRevB.61.10361
  14. Q. Mao, Z. Ji and J. Xi, "Realization of forming-free ZnO-based resistive switching memory by controlling film thickness," Applied Physics. vol. 43, No. 39, pp.395104, Sep. 2010.