References
- Abe, S., Rhee, S., Iwanuma, O., Hiroki, E., Yanagisawa, N., Sakiyama, K. and Ide, Y. 2009. Effect of mechanical stretching on expressions of muscle specific transcription factors MyoD, Myf-5, myogenin and MRF4 in proliferated myoblasts. Anat. Histol. Embryol. 38, 305-310. https://doi.org/10.1111/j.1439-0264.2009.00945.x
- Attaix, D., Combaret, L., Béchet, D. and Taillandier, D. 2008. Role of the ubiquitin-proteasome pathway in muscle atrophy in cachexia. Curr. Opin. Support. Palliat. Care 2, 262-266. https://doi.org/10.1097/SPC.0b013e3283196ac2
- Bedard, N., Jammoul, S., Moore, T., Wykes, L., Hallauer, P. L., Hastings, K. E., Stretch, C., Baracos, V., Chevalier, S., Plourde, M., Coyne, E. and Wing, S. S. 2015. Inactivation of the ubiquitin-specific protease 19 deubiquitinating enzyme protects against muscle wasting. FASEB. J. 29, 3889-3898. https://doi.org/10.1096/fj.15-270579
- Cao, P. R., Kim, H. J. and Lecker, S. H. 2005. Ubiquitin-protein ligases in muscle wasting. Int. J. Biochem. Cell. Biol. 37, 2088-2097. https://doi.org/10.1016/j.biocel.2004.11.010
- Chao, P. Y., Lin, K. H., Chiu, C. C., Yang, Y. Y., Huang, M. Y. and Yang, C. M. 2013. Inhibitive effects of mulberry leaf-related extracts on cell adhesion and inflammatory response in human aortic endothelial cells. Evid. Based Complement. Alternat. Med. 2013, 267217.
- Fogarty, S. and Hardie, D. G. 2010. Development of protein kinase activators: AMPK as a target in metabolic disorders and cancer. Biochim. Biophys. Acta 1804, 581-591. https://doi.org/10.1016/j.bbapap.2009.09.012
- Foletta, V. C., White, L. J., Larsen, A. E., Léger, B. and Russell, A. P. 2011. The role and regulation of MAFbx/atrogin-1 and MuRF1 in skeletal muscle atrophy. Pflugers Arch. 461, 325-335. https://doi.org/10.1007/s00424-010-0919-9
- Hardie, D. G. 2014. AMPK--sensing energy while talking to other signaling pathways. Cell Metab. 20, 939-952. https://doi.org/10.1016/j.cmet.2014.09.013
- Huang, C. H., Tsai, S. J., Wang, Y. J., Pan, M. H., Kao, J. Y. and Way, T. D. 2009. EGCG inhibits protein synthesis, lipogenesis, and cell cycle progression through activation of AMPK in p53 positive and negative human hepatoma cells. Mol. Nutr. Food Res. 53, 1156-1165. https://doi.org/10.1002/mnfr.200800592
- Huang, S. S., Yan, Y. H., Ko, C. H., Chen, K. M., Lee, S. C. and Liu, C. T. 2014. A Comparison of food-grade Folium mori (Sāng Yè) extract and 1-deoxynojirimycin for glycemic control and renal function in streptozotocin-induced diabetic rats. J. Tradit. Complement. Med. 4, 162-170. https://doi.org/10.4103/2225-4110.131639
- Hyatt, J. P., Roy, R. R., Baldwin, K. M. and Edgerton, V. R. 2003. Nerve activity-independent regulation of skeletal muscle atrophy: role of MyoD and myogenin in satellite cells and myonuclei. Am. J. Physiol. Cell. Physiol. 285, C1161-1173. https://doi.org/10.1152/ajpcell.00128.2003
- Jackman, R. W. and Kandarian, S. C. 2004. The molecular basis of skeletal muscle atrophy. Am. J. Physiol. Cell Physiol. 287, C834-843. https://doi.org/10.1152/ajpcell.00579.2003
- Jaitovich, A., Angulo, M., Lecuona, E., Dada, L. A., Welch, L. C., Cheng, Y., Gusarova, G., Ceco, E., Liu, C., Shigemura, M., Barreiro, E., Patterson, C., Nader, G. A. and Sznajder, J. I. 2015. High CO2 levels cause skeletal muscle atrophy via AMP-activated kinase (AMPK), FoxO3a protein, and muscle-specific Ring finger protein 1 (MuRF1). J. Biol. Chem. 290, 9183-9194. https://doi.org/10.1074/jbc.M114.625715
- Jeon, Y. S. and Kim, M. W. 2011. The antioxidative effects and isolation and characterization of the extracts from Morus alba L.. Kor. J. Food Nutr. 24, 94-100. https://doi.org/10.9799/ksfan.2011.24.1.094
- Jiang, L. D., Xuan, G. D., Zhao, L., Zhu, Y. F. and Lou, X. F. 2011. Study on determination and pharmacokinetics of metabolites from Folium Mori extract in rats. Zhejiang Da Xue Xue Bao Yi Xue Ban. 40, 395-401.
- Kobayashi, Y., Miyazawa, M., Kamei, A., Abe, K. and Kojima, T. 2010. Ameliorative effects of mulberry (Morus alba L.) leaves on hyperlipidemia in rats fed a high-fat diet: induction of fatty acid oxidation, inhibition of lipogenesis, and suppression of oxidative stress. Biosci. Biotechnol. Biochem. 74, 2385-2395. https://doi.org/10.1271/bbb.100392
- Lee, J., Chae, K., Ha, J., Park, B. Y., Lee, H. S., Jeong, S., Kim, M. Y. and Yoon, M. 2008. Regulation of obesity and lipid disorders by herbal extracts from Morus alba, Melissa officinalis, and Artemisia capillaris in high-fat diet-induced obese mice. J. Ethnopharmacol. 115, 263-270. https://doi.org/10.1016/j.jep.2007.09.029
-
Lee, S. K, Lee, J. O., Kim, J. H., Kim, N., You, G. Y., Moon, J. W., Sha, J., Kim, S. J., Lee, Y. W., Kang, H. J., Park, S. H. and Kim, H. S. 2012. Coenzyme Q10 increases the fatty acid oxidation through AMPK-mediated
$PPAR{\alpha}$ induction in 3T3-L1 preadipocytes. Cell. Signal. 24, 2329-2336. https://doi.org/10.1016/j.cellsig.2012.07.022 - Marcinko, K. and Steinberg, G. R. 2014. The role of AMPK in controlling metabolism and mitochondrial biogenesis during exercise. Exp. Physiol. 99, 1581-1585. https://doi.org/10.1113/expphysiol.2014.082255
- Miranda, N., Tovar, A. R., Palacios, B. and Torres, N. 2007. AMPK as a cellular energy sensor and its function in the organism. Rev. Invest. Clin. 59, 458-469.
- Murton, AJ, Constantin, D, Greenhaff, PL. The involvement of the ubiquitin proteasome system in human skeletal muscle remodelling and atrophy. Biochim Biophys Acta. 1782, 730-743.
- Nakashima, K. and Yakabe, Y. 2007. AMPK activation stimulates myofibrillar protein degradation and expression of atrophy-related ubiquitin ligases by increasing FOXO transcription factors in C2C12 myotubes. Biosci. Biotechnol. Biochem. 71, 1650-1656. https://doi.org/10.1271/bbb.70057
- Price, S. R. and Mitch, W. E. 1998. Mechanisms stimulating protein degradation to cause muscle atrophy. Curr. Opin. Clin. Nutr. Metab. Care 1, 79-83. https://doi.org/10.1097/00075197-199801000-00013
- Price, S. R. 2003. Increased transcription of ubiquitin-proteasome system components: molecular responses associated with muscle atrophy. Int. J. Biochem. Cell. Biol. 35, 617-628. https://doi.org/10.1016/S1357-2725(02)00385-0
- Rutter, G. A., Da Silva Xavier, G. and Leclerc, I. 2003. Roles of 5'-AMP-activated protein kinase (AMPK) in mammalian glucose homoeostasis. Biochem. J. 375, 1-16. https://doi.org/10.1042/bj20030048
- Sanchez, A. M., Csibi, A., Raibon, A., Cornille, K., Gay, S., Bernardi, H. and Candau, R. 2012. AMPK promotes skeletal muscle autophagy through activation of forkhead FoxO3a and interaction with Ulk1. J. Cell. Biochem. 113, 695-710. https://doi.org/10.1002/jcb.23399
- Tintignac, L. A., Lagirand, J., Batonnet, S., Sirri, V., Leibovitch, M. P. and Leibovitch, S. A. 2005. Degradation of MyoD mediated by the SCF (MAFbx) ubiquitin ligase. J. Biol. Chem. 280, 2847-2856. https://doi.org/10.1074/jbc.M411346200
- Tong, J. F., Yan, X., Zhu, M. J. and Du, M. 2009. AMP-activated protein kinase enhances the expression of muscle-specific ubiquitin ligases despite its activation of IGF-1/Akt signaling in C2C12 myotubes. J. Cell. Biochem. 108, 458-468. https://doi.org/10.1002/jcb.22272
- Troncoso, R., Paredes, F., Parra, V., Gatica, D., Vasquez-Trincado, C., Quiroga, C., Bravo-Sagua, R., Lopez-Crisosto, C., Rodriguez, A. E., Oyarzun, A. P., Kroemer, G. and Lavandero, S. 2014. Dexamethasone-induced autophagy mediates muscle atrophy through mitochondrial clearance. Cell Cycle 13, 2281-2295. https://doi.org/10.4161/cc.29272
- Yoshida, S., Hiradate, S., Tsukamoto, T., Hatakeda, K. and Shirata, A. 2001. Antimicrobial activity of culture filtrate of bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopathology 91, 181-187. https://doi.org/10.1094/PHYTO.2001.91.2.181