DOI QR코드

DOI QR Code

In Silico 분자결합 분석방법을 활용한 tubocurarine과 승마 추출성분 actein의 아세틸콜린 결합 단백질 활성 부위에 대한 결합 친화도 비교 분석

In Silico Molecular Docking Comparison of Tubocurarine and the Active Ingredients of Cimicifugae rhizoma on Acetylcholine Binding Proteins

  • 김동찬 (김천대학교 임상병리학과)
  • Kim, Dong-Chan (Department of Biomedical Laboratory Science, Gimcheon University)
  • 투고 : 2018.02.13
  • 심사 : 2018.03.26
  • 발행 : 2018.04.30

초록

Actein은 널리 알려진 승마 추출물의 주요 생리 활성 효능 성분이다. 본 연구에서는 acetylcholine 수용체의 활성을 억제하는 것으로 활용된 AchBP 단백질 길항제(antagonist) tubocurarine과 승마 추출물의 효능 성분 actein 및 actein 유도체(27-deoxyactin, (26S)-actein, (26R)-actein)들의 AchBP 단백질 B와 C domain 활성 부위에 대한 친화도 분석 실험을 컴퓨터 분자결합 분석 방법을 통해 비교하였다. AchBP 단백질 B와 C domain의 3차원 구조정보는 PDB database (PDB ID: 2XYT)를 활용하였다. In silico 결합 분석을 수행하기 위해 PyRx, Autodock Vina, Discovery Studio Version 4.5, and NX-QuickPharm 프로그램을 각 분석 조건에 따라 활용하였다. AchBP 단백질 B와 C domain 활성 부위에 대한 actein의 최대 결합친화도는 -10.50 kcal/mol으로 나왔으며 이는 -9.80 kcal/mol으로 분석된 tubocurarine의 결합 친화도 보다 훨씬 더 높고 효율적인 것으로 분석되었다. Tubocurarine에 비하여 결합친화도 값이 높게 분석된actein, 27-deoxyactein, (26R)-actein 유도체 성분들과 상호작용 하는 AchBP 단백질 활성 부위의 아미노산들 가운데 tryptophan 84와 tyrosine 147이 높은 결합친화도를 형성하는데 매우 중요한 역할을 하는 아미노산으로 예상이 되었다. Tubocurarine의 AchBP 단백질 활성 부위에 대한 X,Y,Z Grid 값은 X=38.300689, Y=112.053467, Z=51.991022으로 나왔으나 actein과 actein 유도체들은 대부분 X=26.4, Y=127.3, Z=43.7 값 주변에 centroid grid를 형성하였다. 즉, tubocurarine이 결합하는 부위와는 다른 부위에 결합하여 AchBP의 활성에 영향을 주는 것으로 사료되었다. 이상의 연구 결과들을 분석해 볼 때, 아세틸콜린 수용체 길항제 tubocurarine보다 승마 추출물 생리 활성 물질인 actein과 그 유도체들이 보다 더 효율적인 아세틸콜린 수용체 길항제로 작용할 수 있음을 확인하였다. 결론적으로 승마 추출물 또는 actein 성분은 피부 주름 개선 효능을 지닌 보톡스를 대체하거나 또는 주름 개선용 화장품 신물질 연구 개발 분야에 효율적으로 활용할 수 있을 것으로 사료된다.

Actein is the well-known active ingredient of Cimicifugae rhizoma (Black cohosh). In this study, we investigated and compared the binding affinity of tubocurarine, actein, and actein derivatives on the B&C domain of the acetylcholine binding protein through in silico computational docking studies. The three-dimensional crystallographic structure of the acetylcholine binding protein B&C domain was obtained from the PDB database (PDB ID: 2XYT). An in silico computational autodocking analysis was performed using PyRx, Autodock Vina, Discovery Studio Version 4.5, and NX-QuickPharm based on scoring functions. The actein showed an optimum binding affinity (docking energy), with the acetylcholine binding protein at -10.50 kcal/mol as compared to the tubocurarine (-9.80 kcal/mol). The interacting amino acids tryptophan 84 and tryptophan 147, in the B domain of the acetylcholine binding protein active site, significantly interacted with the actein and 27-deoxyactein, and (26R)-actein. The centroid XYZ grid position of the tubocurarine was X=38.300689, Y=112.053467, and Z=51.991022, but the actein and its derivatives showed values around X=26.4, Y=127.3, Z=43.7. These results clearly indicated that actein and its derivatives could be a more potent antagonist to the acetylcholine binding protein than tubocurarine. Therefore, the extract of Cimicifugae rhizoma or actein containing biomaterials can substitute for the botulinum toxin-mediated acetylcholine receptor regulation, and be applied to the anti-wrinkle cosmetics industry.

키워드

참고문헌

  1. Auerbach, A. 2015. Activation of endplate nicotinic acetylcholine receptors by agonists. Biochem. Pharmacol. 97, 601-608. https://doi.org/10.1016/j.bcp.2015.06.024
  2. Brams, M., Pandya, A., Kuzmin, D., van Elk, R., Krijnen, L., Yakel, J. L., Tsetlin, V., Smit, A. B. and Ulens, C. 2011. A structural and mutagenic blueprint for molecular recognition of strychnine and d-tubocurarine by different cysloop receptors. PLoS Biol. 9, e1001034. https://doi.org/10.1371/journal.pbio.1001034
  3. Calleja-Agius, J., Muscat-Baron, Y. and Brincat, M. P. 2007. Skin ageing. Menopause Int. 13, 60-64. https://doi.org/10.1258/175404507780796325
  4. Duplantier, A. J., Kane, C. D. and Bavari, S. 2016. Searching for therapeutics against botulinum neurotoxins: a true challenge for drug discovery. Curr. Top. Med. Chem. 16, 2330-2349. https://doi.org/10.2174/1568026616666160413135630
  5. Gao, F., Bern, N., Little, A., Wang, H. L., Hansen, S. B., Talley, T. T., Taylor, P. and Sine, S. M. 2003. Curariform antagonists bind in different orientations to acetylcholine-binding protein. J. Biol. Chem. 278, 23020-23026. https://doi.org/10.1074/jbc.M301151200
  6. Green, J. B. and Keaney, T. C. 2017. Aesthetic treatment with botulinum toxin: approaches specific to men. Dermatol. Surg. 43 Suppl 2, S153-S156. https://doi.org/10.1097/DSS.0000000000001375
  7. Hill, D. A., Crider, M. and Hill, S. R. 2016. Hormone therapy and other treatments for symptoms of menopause. Am. Fam. Physician 94, 884-889.
  8. Kim, D. C. 2017. Identification of quercetin as a potential band 3 protein antioxidant using ektacytometry and in silico molecular docking technology. Int. J. Appl. Engin. Res. 12, 8812-8816.
  9. Lim, S., Othman, R., Yusof, R. and Heh, C. 2017. Rational drug discovery of HCV helicase inhibitor: Improved docking accuracy with multiple seedings of Autodock Vina and in situ minimization. Curr. Comput. Aided Drug Des. 13, 160-169. https://doi.org/10.2174/1573409912666161130122622
  10. McDaniel, D. H., Mazur, C., Wortzman, M. S. and Nelson, D. B. 2017. Efficacy and tolerability of a double-conjugated retinoid cream vs 1.0% retinol cream or 0.025% tretinoin cream in subjects with mild to severe photoaging. J. Cosmet. Dermatol. 16, 542-548. https://doi.org/10.1111/jocd.12381
  11. Rice, S., Amon, A. and Whitehead, S. A. 2007. Ethanolic extracts of black cohosh (Actaea racemosa) inhibit growth and oestradiol synthesis from oestrone sulphate in breast cancer cells. Maturitas 56, 359-367. https://doi.org/10.1016/j.maturitas.2006.10.002
  12. Trott, O. and Olson, A. J. 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455-461.
  13. Woo, K. C., Park, Y. S., Jun, D. J., Lim, J. O., Baek, W. Y., Suh, B. S. and Kim, K. T. 2004. Phytoestrogen cimicifugoside-mediated inhibition of catecholamine secretion by blocking nicotinic acetylcholine receptor in bovine adrenal chromaffin cells. J. Pharmacol. Exp. Ther. 309, 641-649. https://doi.org/10.1124/jpet.103.062331