DOI QR코드

DOI QR Code

Genetic Analysis of Complementary Gene Interactions of Pb and Pp Genes for the Purple Pericarp Trait in Rice

흑미의 자색종자과피(Purple pericarp) 형질을 결정하는 상보적 유전자 Pb와 Pp 유전자들의 상호관계 분석

  • Lee, Kyung Eun (Molecular Genetics Laboratory, Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University) ;
  • Rahman, Md Mominur (Molecular Genetics Laboratory, Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University) ;
  • Kim, Jong Bae (Institute of Health & Environment in Daegu) ;
  • Kang, Sang Gu (Molecular Genetics Laboratory, Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University)
  • Received : 2018.02.03
  • Accepted : 2018.04.11
  • Published : 2018.04.30

Abstract

The Purple pericarp (Prp) trait is a trait often bred for in black rice. Generally, the Prp trait is displayed in the color variations of seeds following the 9:3:4 purple, brown, and white ratio, respectively. The Prp trait is a recessive epistasis of two gene interactions; however, it is caused by the two complementation genes Pb and Pp. Here we present a study of the genetic characteristics of the Prp trait using an $F_1$ hybrid with a Pbpb Pppp genotype. This hybrid generated four seed colors with the following numbers: 3 dark purple, 6 medium purple, 3 brown, and 4 white (or 9 purple, 3 brown, and 4 white). However, further biochemical analysis of the all progenies divided them into two groups. One group had the Pb_ Pp_ allelic constitutions and contained cyanidin 3-O-glucoside (C3G) in both the dark purple or medium purple seeds. The other group, however, was absent of C3G in both the brown and white seeds, resulting in a ratio of 9:7, respectively. This segregation revealed the extended Mendelian 9:7 ratios of the complementary gene interactions with a good fitness in ${\chi}^2$ analysis. Further analysis revealed that brown seeds with the Pb_ pppp genotype corresponded with a null C3G, indicating that the Brown pericarp trait in rice is caused by a dominant allele of the Pb gene. Therefore, we conclude that the production of C3G is a main phenotype of the black and purple colored rice in the Prp trait, and it is governed by the complementary gene interactions between Pb and Pp genes.

벼 자색 종자과피(Purple pericarp, Prp) 형질은 주요 생리활성물질인 안토시아닌 C3G 생성에 관여하며 흑미를 결정하는 주요 유전형질이다. Prp 유전형질을 가진 흑미와 종자과피에 색이 없는 벼를 교배할 경우 그 후대는 검정색, 갈색, 백색이 각각 9:3:4로 분리된다. 1921년 Nagai에 의하여 제시된 바 벼 종자 색의 9:3:4 유전분리비로 인하여 벼 Prp 형질은 유전자의 열성상위(recessive epistasis) 현상으로 해석되었다. 그러나 흑미를 결정하는 Prp 형질은 두 개의 상보적 유전자들의 상호관계(complementary gene interaction)에 의한 것이기도 하다. 본 연구에서는 이러한 논란이 발생되는 이유를 설명하기 위하여 두 유전자의 조성이 완전한 이형접합인 Pbpb Pppp 유전자형을 가진 $F_1$ 잡종을 만들었다. 이들의 자손은 진한자색(검정), 중간자색, 갈색, 백색 종자이며 각각 3:6:3:4로 분리되었다. 즉, 검정색, 갈색, 백색의 종자가 각각 9:3:4의 비율로 분리된다. 그러나 생화학적인 분석결과 이들은 안토시아닌 중 cyanidin 3-O-glucoside (C3G)가 축적된 검정색 종자와 C3G가 없는 갈색 또는 백색 종자인 두 개의 집단을 분리되며 정확히 9:7의 분리 비를 갖는다. 이 경우 벼 Prp 형질을 갖는 검정쌀 또는 흑미는 전형적인 상보적 유전자의 상호관계에 의한 유전현상이다. 즉, 흑미의 자색 종피 형질 발현에는 Pb 유전자와 Pp 유전자에서 각각 한 개 이상의 우성대립인자의 발현이 필요하다. 그러나 Pb 유전자만 우성대립인자가 존재하는 Pb_ pppp 유전자형의 벼는 C3G를 생성하지 못하고 갈색 종자과피(Brown pericarp, Brp) 형질을 갖게 된다. 즉 갈색쌀는 우성 Pb 유전자의 우성대립인자에 의하여 결정된다. 그러므로 종피색을 결정하는 Prp 형질의 유전양상은 열성상위 현상으로 보이나 흑미의 결정요소인 안토시아닌 C3G의 함유 여부에 관한 유전분석을 시행하면 9:7의 비율로서 전형적인 두 개의 유전자가 모두 관여하는 상보적 유전현상이다. 유전적 정의는 유전자의 최종산물에 의한 물리적 또는 화학적 결정이다. 그러므로 결론하여 검정 쌀의 주요 생리활성물질인 안토시아닌 C3G 생성에 관한 유전현상은 Pb와 Pp 유전자의 상보적 유전자의 상호에 의한 것이다.

Keywords

References

  1. Higashi, T., Yamaguchi, M., Oyamada, Z., Sunohara, Y., Kowata, H., Tamura, Y., Yokogami, N., Sasaki, T., Abe, S. and Matsunaga, K. 1997. Breeding of a purple grain glutinous rice cultivar Asamurasaki. Bull. Tohoku Natl. Agric. Exp. Stn. 92, 1-13.
  2. Hsieh, S. C. and Chang, T. M. 1964. Genetic analysis in rice. IV. Genes for purple pericarp and other characters. Jpn. J. Breed. 14, 141-149. https://doi.org/10.1270/jsbbs1951.14.141
  3. Hyun, J. W. and Chung, H. S. 2004. Cyanidin and malvidin from Oryza sativa cv. Heugjinjubyeo mediate cytotoxicity against human monocytic leukemia cells by arrest of G2/M phase and induction of apoptosis. J. Agric. Food. Chem. 52, 2213-2217. https://doi.org/10.1021/jf030370h
  4. Kang, S. G., Pandeya, D., Kim, S. S. and Suh, H. S. 2006. Morphological characters of panicle and seed mutants of rice. Kor. J. Crop. Sci. 51, 348-355.
  5. Lee, J. H. 2010. Identification and quantification of anthocyanins from the grains of black rice (Oryza sativa L.) varieties. Food. Sci. Biotechnol. 19, 391-397. https://doi.org/10.1007/s10068-010-0055-5
  6. Maeda, H., Yamaguchi, T., Omoteno, M., Takarada, T., Fujita, K., Murata, K., Iyama, Y., Kojima, Y., Morikawa, M., Ozaki, H., Mukaino, N., Kidani, Y. and Ebitani, T. 2014. Genetic dissection of black grain rice by the development of a near isogenic line. Breed Sci. 64, 134-141. https://doi.org/10.1270/jsbbs.64.134
  7. Martin. M. N. and Kang, S. G. 2012. Genetic and phenotypic analysis of lax 1-6, a mutant allele of LAX PANICLE1 in rice. J. Plant Biol. 55, 50-63. https://doi.org/10.1007/s12374-011-9189-0
  8. Min, S. W., Ryu, S. N. and Kim, D. H. 2010. Anti-inflammatory effects of black rice, cyanidin-3-O-$\beta$-d-glycoside, and its metabolites, cyanidin and protocatechuic acid. Int. Immunopharmacol. 10, 959-966. https://doi.org/10.1016/j.intimp.2010.05.009
  9. Mitra, S. K., Gupta, S. N. and Gangulii, P. M. 1928. Color inheritance in rice. Mem. Dept. Agric. Indian. Bot. 15, 85-102.
  10. Nagai, I. 1921. A genetico-physiological study on the formation of anthocyanin and brown pigments in plants. J. Col. Agr. Imp. Univ. Tokyo 8, 1-92.
  11. Parnell, F. R., Rangaswamy-Ayyangar, G. N. and Ramiah, K. 1922. The inheritance of characters in rice. II. Mem. Dept. Agrc. Indian Bot. 11, 185-208.
  12. Rahman, M. M., Lee, K. E. and Kang, S. G. 2015. Studies on the effects of pericarp pigmentation on grain development and yield of black rice. Indian J. Genet. 75, 426-433.
  13. Rahman, M. M., Lee, K. E. and Kang, S. G. 2016. Allelic gene interaction and anthocyanin biosynthesis of purple pericarp trait for yield improvement in black rice. J. Life Sci. 26, 727-736. https://doi.org/10.5352/JLS.2016.26.6.727
  14. Rahman, M. M., Lee, K. E., Lee, E. S., Matin, M. N., Lee, D. S., Yun, J. S., Kim, J. B. and Kang, S. G. 2013. The genetic constitutions of complementary Genes Pp and Pb determine the purple color variation in pericarps with cyanidin-3-O-glucoside depositions in black rice. J. Plant Biol. 56, 24-31. https://doi.org/10.1007/s12374-012-0043-9
  15. Reddy, V. S., Dash, S. and Reddy, A. R. 1995. Anthocyanin pathway in rice (Oryza sativa L.): identification of a mutant showing dominant inhibition of anthocyanins in leaf and accumulation of proanthocyanidins in pericarps. Theor. Appl. Genet. 91, 301-312.
  16. Ryu, S. N., Park, S. Z. and Ho, C. T. 1998. High performance liquid chromatographic determination of anthocyanin pigments in some varieties of black rice. J. Food Drug Analysis 6, 729-736.
  17. Sakamoto, W., Ohmori, T., Kageyama, K., Miyazaki, C., Saito, A., Murata, M., Noda, K. and Maekawa, M. 2001. The Purple leaf (Pl) locus of rice: the $Pl^w$ allele has a complex organization and includes two genes encoding basic helix-loop-helix proteins involved in anthocyanin biosynthesis. Plant Cell Physiol. 42, 982-991. https://doi.org/10.1093/pcp/pce128
  18. Takashi, I., Bing, X., Yoichi, Y., Masaharu, N. and Tetsuya, K. 2001. Antioxidant activity of anthocyanin extract from purple black rice. J. Med. Food. 4, 211-218. https://doi.org/10.1089/10966200152744481
  19. Takita, T., Higashi, T., Yamaguchi, M., Yokogami, N., Kataoka, T., Tamura, Y., Kowata, H., Oyamada, Z. and Sunohara, Y. 2001. Breeding of a new purple grain rice cultivar Okuno-murasaki. Bull. Tohoku. Natl. Agric. Exp. Stn. 98, 1-10.
  20. Tsuda, T., Horio, F. and Osawa, T. 2002. Cyanidin 3-O-$\beta$-glucoside suppresses nitric oxide production during a zymosan treatmentin rats. J. Nutr. Sci. Vitaminol. 48, 305-310. https://doi.org/10.3177/jnsv.48.305
  21. Wang, C. and Shu, Q. 2007 Fine mapping and candidate gene analysis of Purple pericarp gene Pb in rice (Oryza sativa L.). Chinese Sci. Bull. 52, 3097-3104. https://doi.org/10.1007/s11434-007-0472-x
  22. Woodward, R. W. and Thieret, J. W. 1953. A genetic study of complementary genes for purple lemma, palea, and pericarp in barley (Hordeum vulgare L.). Agron. J. 45, 182-185. https://doi.org/10.2134/agronj1953.00021962004500050002x
  23. Xing, P. L., Lan, S. Q., Zhang, Y. L. and Liu, Y. P. 2010. Identification of molecular markers linked to the genes for purple grain color in wheat (Triticum aestivum). Genet. Resour. Crop Evol. 57, 1007-1012. https://doi.org/10.1007/s10722-010-9542-z
  24. Xing, Y. and Zhang, Q. 2010. Genetic and molecular bases of rice yield. Annu. Rev. Plant Biol. 61, 421-442. https://doi.org/10.1146/annurev-arplant-042809-112209
  25. Yoon, H. H., Paik, Y. S., Kim, J. B. and Hahn, T. R. 1995. Identification of anthocyanidins from Korean pigmented rice. Agric. Chem. Biotechnol. 38, 581-583.
  26. Zhang, M. W., Zhou, J. and Peng, Z. M. 1994. Effects of different sowing date on yield traits and pigment contents in purple pericarp rice. J. Hubei Agril. Sci. 1, 1-4.