DOI QR코드

DOI QR Code

Gaseous Fuel Level Measurement of Ultrasonic Wave based on Gauss Algorithm

가우스알고리즘에 의한 초음파의 가스연료레벨 계측

  • Kim, Hong-Ju (Department of Mechanical Engineering, Graduate School, Kongju National University) ;
  • Choi, Doo-Seuk (Division of Mechanical & Automotive Engineering, Kongju National University)
  • 김홍주 (공주대학교 대학원 기계공학과) ;
  • 최두석 (공주대학교 기계자동차공학부)
  • Received : 2018.03.02
  • Accepted : 2018.04.20
  • Published : 2018.04.28

Abstract

The amount of CNG was measured using a pressure sensor in the case of CNG vehicles. However, the current measurement method causes anxiety to the driver because it is difficult to measure the detailed amount of CNG according to various environmental conditions. This study was performed to measure the amount of CNG in CNG fuel system, and presented the method of measurement by simulating the detection system of CNG. In this experiment, a detection simulator with an ultrasonic sensor in CNG tank of Type-3 was designed, and the reception signal of the ultrasonic sensor was verified by reducing the pressure from 100 bars to 0 bars (increment=5 bars) using compressed air. As a result, the output signal voltage of the ultrasonic sensor decreased as the pressure in the tank decreased, and the it was verified that the shape of the graph was linearity.

CNG 차량의 경우 압력센서를 이용하여 CNG의 양을 계측하고 있다. 그러나 주변 환경 조건에 따라 정확한 양을 파악하는데 어려움이 있어 운전자에게 불안감을 조성하게 된다. 본 연구는 CNG 연료 시스템에서 CNG의 양을 정밀하게 측정하기 위한 기초 연구로써 CNG 연료량 검출 시스템을 모사하여 측정방법을 제시하고자 한다. 실험은 Type-3의 CNG 탱크에 초음파 센서를 적용한 연료량 검출 모사장치 구현하였다. 그리고 내부의 압력은 압축공기를 이용하여 100 bar 에서 0 bar 까지 5 bar 단위로 저감시키면서 초음파 센서의 수신 신호를 검증하였다. 그 결과 탱크 내 압력이 감소함에 따라 초음파 센서의 출력 신호가 감쇠하는 것을 알 수 있었고, 다소 차이는 있었지만 선형성을 띄고 있는 것을 확인할 수 있었다.

Keywords

References

  1. S. W. Lee, G. H. Lim, C. W. Park, Y. Choi & C. G. Kim. (2015). Characteristics of Combustion and Emission for Synthetic Natural Gas in CNG Engine. Journal of the Korean Institute of Gas, 19(6), 8-14 https://doi.org/10.7842/KIGAS.2015.19.6.8
  2. G. A. Karim & I. A. Ali. (1975). Combustion, knock and emission characteristics of a natural gas fuelled spark ignition engine with particular reference to low intake temperature conditions. Proceedings of the Institution of Mechanical Engineers. 189(1), 139-147. https://doi.org/10.1243/PIME_PROC_1975_189_020_02
  3. K. Kato et al. (1999). Development of engine for natural gas vehicle. SAE Technical Paper.
  4. S. Y. Hwang, J. S. Seo & J. K. Park. (2007) Uncertainty Evaluation of Ultrasonic Flowmeter Varied with Temperature and New Improvement Method. Proceeding of the KFMA Annual Meeting, 503-508.
  5. K. S. KIm, D. S. Choi, Y. C. Kim & J. U. Cho. (2013). Study on Relation of Optimum Resonant Frequencies between Piezo Ceramic and Matching Layer. Journal of the Korea Academia-Industrial Cooperation Society, 14(7), 3191-3196. DOI : 10.5762/KAIS.2013.14.7.3191
  6. C. S. Eun & Y. C. Lee. (2016) Compensation of the Non-linearity of the Audio Power Amplifier Converged with Digital Signal Processing Technic. Journal of the Korea Convergence Society, 7(3), 77-85. DOI : 10.15207/JKCS.2016.7.3.077
  7. G. C. Park, S. H. Lee, C. S. Park, D. W. Kim, W. T. Kim & G. R. Jeon. (2014). Study on the Development of Sensors for Distance Measure Using Ultrasonic. Journal of Sensor Science and Technology, 23(1), 46-50. https://doi.org/10.5369/JSST.2014.23.1.46
  8. J. N. Som. (1994) Study on the Calibration of the Transit-time Ultrasonic Flowmeter. Journal of Pure and Applied Ultrasonics, 17(4), 114-120.
  9. L. K. Oh. (2007) Fiber sensor based on piezoelectric ultrasonic wave. Journal of Intelligent Material Systems and Structures. 19(3)
  10. R. T. Higuti & J. C. Adamowski. (2002) Ultrasonic densitometer using a multiple reflection technique. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 49(9), 1260-1268. https://doi.org/10.1109/TUFFC.2002.1041543
  11. T. George, E. Rufus, C. Zachariah & Alex. (2016) Quality Analysis of Transformer Oil in Hermitically Sealed Tank using Ultrasonic Lamb Wave Sensor. Indian Journal of Science and Technology, 9(20)
  12. V. Shah & K. Balasubramaniam. (1996) Effect of viscosity on ultrasound wave reflection from a solid/liquid interface. Ultrasonics, 34(8), 817-24. https://doi.org/10.1016/S0041-624X(96)00082-0
  13. B. S. Kim & O. H. Kang. (2014) Design and Implementation of a Range Measuring Sensor Network with Z-Stack on CC2530. Journal of Digital Contents Society, 15(2), 167-172. DOI : 10.9728/DCS.2014.15.2.167
  14. K. S. KIm, D. S. Choi, Y. C. Kim & J. U. Cho. (2013). Study on Relation of Optimum Resonant Frequencies between Piezo Ceramic and Matching Layer. Journal of the Korea Academia-Industrial Cooperation Society, 14(7), 3191-3196. https://doi.org/10.5762/KAIS.2013.14.7.3191
  15. H. J. Chun & P. S. Jang. (2001) Ultrasound Wave Propagation in Thick Composites with Uniform Fiber Waviness. Journal of Korean Society for Nondestructive Testing, 21(3), 288-298.
  16. Y. J. Lee & J. I. Im. (2006). Development and Evaluation of the piezoelectric transducer for the transit-time ultrasonic flowmeters. The Institute of Electronics Engineers of Korea - System and Control, 43(4), 30-34.
  17. J. S. Lim. (2017) Design of Wideband RF Frequency Measurement System with EP2AGX FPGA. Journal of the Korea Convergence Society, 8(7), 1-6. DOI : 10.15207/JKCS.2017.8.7.001
  18. J. Y. Lee, H. T. Oh, K. Choi & H. Y. Lee. (2015). Effect of the Electrode Type on the Dielectric and Piezoelectric Properties of Piezoelectric PMN-PZT Single Crystals. Journal of the Korean Ceramic Society, 52(1), 77-82. DOI : 10.4191/KCERS.2015.52.1.77