DOI QR코드

DOI QR Code

강우변화에 따른 토층 내 침투깊이를 고려한 산사태위험지수 개발

Landslide Susceptibility Assessment Considering the Saturation Depth Ratio by Rainfall Change

  • 곽재환 (산림조합중앙회 산림공학연구소) ;
  • 김만일 (산림조합중앙회 산림공학연구소) ;
  • 이승재 ((재)국가농림기상센터)
  • Kwak, Jae Hwan (Forest Engineering Research Institute, National Forestry Cooperative Federation) ;
  • Kim, Man-Il (Forest Engineering Research Institute, National Forestry Cooperative Federation) ;
  • Lee, Seung-Jae (National Center for AgroMeteorology)
  • 투고 : 2018.11.20
  • 심사 : 2018.12.21
  • 발행 : 2018.12.31

초록

강우변화에 따라 토층 내로 침투되는 강우양상을 파악하는 것은 산사태 위험도 평가에 있어 매우 중요한 요소라 할 수 있다. 본 연구에서는 재현기간 별 강우변화에 따른 안전율 기반의 산사태 위험도를 평가하고 이를 바탕으로 연구지역 내 산사태 위험지수를 제안하고자 하였다. 산사태 위험지수는 토층으로 침투되는 강우양상을 침투깊이비로 추정하고 이를 기반으로 산사태 위험도를 사전에 파악할 수 있도록 지수로 표현한 것이다. 연구지역에 대한 산사태 위험도 분석결과, 빈도 별 강우강도가 증가하면서 연구지역 전체 안전율은 감소하는 경향을 보였으나 50년 빈도 이상의 강우조건에서는 점차 수렴하는 경향을 보였다. 이러한 현상은 침투깊이비와 토층깊이에서도 유사하게 나타났으며 경사가 완만할수록 침투깊이가 깊은 것으로 분석되었다. 분석결과를 바탕으로 연구지역 내 복수의 산사태가 발생된 인후리 지역에 대하여 산사태위험지수를 제안하였다. 제안된 산사태위험지수는 과거 산사태 발생 시 강우조건과 비교, 분석한 결과 대부분의 산사태 발생 강우강도 조건에서는 산사태위험지수 2등급, 0.7이상에서 발생된 것으로 분석되었다.

Understanding rain infiltration into the ground is an important feature of landslide risk evaluation. In this study, a landslide risk index for the study area is suggested, wherein the result of the landslide risk evaluation, based on the factor of safety (FS), is used. The landslide risk index is a landslide risk prediction index that utilizes the saturated depth ratio of the ground. Based on the landslide risk result for the study area, it was found that the FS was first to decrease. However, it gradually became convergent over the 50-year rainfall intensity study period, a result that is similar to the relationship between the saturated depth ratio and soil thickness. Moreover, saturated depth was also found to be deeper on gentle slopes than steep slopes. As such, the landslide risk index, based on the Inhu-ri study result, is thus suggested. Additionally, the suggested landslide risk index was compared and analyzed against the rainfall intensity of previous landslide experience. Results thus revealed that almost all landslides that occurred were over 0.7, which is the second grade, based on the landslide risk index.

키워드

JJGHBG_2018_v28n4_687_f0001.png 이미지

Fig. 1. Study area (Sindun-myeon, Icheon-si, Gyeonggi-do) with landslide location.

JJGHBG_2018_v28n4_687_f0002.png 이미지

Fig. 2. Geological map of the study area (source: KIGAM).

JJGHBG_2018_v28n4_687_f0003.png 이미지

Fig. 3. Modified infinite slope model (Chae te al., 2012) considering saturation depth ratio.

JJGHBG_2018_v28n4_687_f0004.png 이미지

Fig. 4. Soil test results and soil database development.

JJGHBG_2018_v28n4_687_f0005.png 이미지

Fig. 5. Thematic maps for the physical properties from the analysis result of the soil in the study area.

JJGHBG_2018_v28n4_687_f0006.png 이미지

Fig. 6. Thematic maps for predicting soil thickness in the study area.

JJGHBG_2018_v28n4_687_f0007.png 이미지

Fig. 7. Distribution of the FS evaluated using the return period. The geographical features of the graded areas have between 20 - 50° slope; those not in compliance with this feature are excluded as a null.)

JJGHBG_2018_v28n4_687_f0008.png 이미지

Fig. 8. Landslide risk grade ratio evaluated for each return period.

JJGHBG_2018_v28n4_687_f0009.png 이미지

Fig. 9. Comparison of the relationship between soil depth and saturated depth ratio.

JJGHBG_2018_v28n4_687_f0010.png 이미지

Fig. 10. Comparison of the relationship between slope and saturated depth ratio.

JJGHBG_2018_v28n4_687_f0011.png 이미지

Fig. 11. Landslide risk index grade of the specific area (Inhu-ri) for the return period.

Table 1. Range of FS for each grade.

JJGHBG_2018_v28n4_687_t0001.png 이미지

Table 2. Classification and evaluation of FS with the grade for each return period

JJGHBG_2018_v28n4_687_t0002.png 이미지

Table 3. Landslide risk index (LRI) of the specific area (Inhu-ri).

JJGHBG_2018_v28n4_687_t0003.png 이미지

참고문헌

  1. Beven K. J. and Kirkby M.J., 1979, A physically-based variable contributing area model of basin hydrology. Hydrological Sciences Bulletin, 24(1), 43-69. https://doi.org/10.1080/02626667909491834
  2. Burrough, P.A., McDonnell, R.A., and Lloyd, C.D., 2013, Principles of Geographical Information Systems. OUP Oxford.
  3. Chae, B-G., Park, K-B., Park, H-J., Choi, J-H. and Kim, M-I., 2012, Analysis of slope stability considering the saturation depth ratio by rainfall infiltration in unsaturated soil, The Journal of Engineering Geology, 22(3), 343-351. https://doi.org/10.9720/kseg.2012.3.343
  4. Ha mmond, C., Hall, D., Miller, S., and Swetik, P., 1992, Level I Stability Analysis (LISA) Documentation for Version 2.0, General Technical Report INT-285, USDA Forest Service Intermountain Research Station 20p.
  5. Jaafari, A., Najafi, A., Pourghasemi, H. R., Rezaeian, J., and Sattarian, A., 2014, GIS-based frequency ratio and index of entropy models for landslide susceptibility assessment in the Caspian forest, northern Iran, International Journal of Environmental Science and Technology, 11(4), 909-926. https://doi.org/10.1007/s13762-013-0464-0
  6. Kim, J-W. and Shin, H-S, 2016, Slope stability assessment on a landslide risk area in ulsan during rainfall, Journal of the Korean Geotechnical Society, 32(6), 27-40. https://doi.org/10.7843/kgs.2016.32.6.27
  7. Longley, P., 2005, Geographic information System and Science, Wiley.
  8. Mehnatkesh, A., Ayoubi, S., Jalaliani, A., and Sahrawat, K., 2013, Relationships between Soil Depth and Terrain Attributes in a Semi Arid Hilly Region in Western Iran, Science Press and Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg, 10, 163-172.
  9. Moore, I., Burch, G., 1986 Physical basis of the length-slope factor in the Universal Soil Loss Equation, Soil Science Society of America Journal, 50(5), 1294-1298. https://doi.org/10.2136/sssaj1986.03615995005000050042x
  10. Moore, I., Grayson, R., Ladson, A., 1991, Digital terrain modeling: a review of hydrological, geomorphological, and biological applications. Hydrological Processes, 5(1), 3-30. https://doi.org/10.1002/hyp.3360050103
  11. Olivares, L. and Picarelli, L., 2003, Shallow flowslides triggered by intense rainfalls in natural slopes covered by loose unsaturated pyroclastic soils, Geotechnique, 53(2), 283-287. https://doi.org/10.1680/geot.2003.53.2.283
  12. Springman, S.M., Jo mmi, C. and Teysseire P., 2003, Instability on moraine slopes induced by loss of suction: a case history, Geotechnique, 53(1), 3-10. https://doi.org/10.1680/geot.2003.53.1.3
  13. Xue, J. and Gavin, K., 2008, Effect of rainfall intensity on infiltration into partly saturated slopes, Geotech Geology Engineering, 26(1), 199-209. https://doi.org/10.1007/s10706-007-9157-0
  14. Yu, J-S., Muha mmad, W., Shin, J-Y., and Kim T-W., 2015, Evaluation of Extended Inverse Distance Weighting Method for Constructing a Flow Duration Curve at Ungauged Basin, J. Korean Soc. Hazard Miting, 15(3), 329-337.