DOI QR코드

DOI QR Code

Collagen-Induced Arthritis Analysis in Rhbdf2 Knockout Mouse

  • Lee, Min-Young (Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kang, Ju-Seong (Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Go, Ryeo-Eun (Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University) ;
  • Byun, Yong-Sub (Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Wi, Young Jin (Department of Life Science, College of Natureal Sciences, Research Institute of Natural Sciences, Hanyang University) ;
  • Hwang, Kyung-A (Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University) ;
  • Choi, Jae-Hoon (Department of Life Science, College of Natureal Sciences, Research Institute of Natural Sciences, Hanyang University) ;
  • Kim, Hyoung-Chin (Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Choi, Kyung-Chul (Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University) ;
  • Nam, Ki-Hoan (Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology)
  • Received : 2017.05.07
  • Accepted : 2017.07.24
  • Published : 2018.05.01

Abstract

Rhomboid family member 2 gene (Rhbdf2) is an inactive homologue lacking essential catalytic residues of rhomboid intramembrane serine proteases. The protein is necessary for maturation of tumor necrosis factor-alpha ($TNF-{\alpha}$) converting enzyme, which is the molecule responsible for the release of $TNF-{\alpha}$. In this study, Rhbdf2 knockout (KO) mice were produced by CRISPR/CAS9. To see the effects of the failure of $TNF-{\alpha}$ release induced by Rhbdf2 gene KO, collagen-induced arthritis (CIA), which is the representative $TNF-{\alpha}$ related disease, was induced in the Rhbdf2 mutant mouse using chicken collagen type II. The severity of the CIA was measured by traditional clinical scores and histopathological analysis of hind limb joints. A rota-rod test and grip strength test were employed to evaluate the severity of CIA based on losses of physical functions. The results indicated that Rhbdf2 mutant mice showed clear alleviation of the clinical severity of CIA as demonstrated by the significantly lower severity indexes. Moreover, a grip strength test was shown to be useful for the evaluation of physical functional losses by CIA. Overall, the results showed that the Rhbdf2 gene has a significant effect on the induction of CIA, which is related to $TNF-{\alpha}$.

Keywords

References

  1. Adrain, C., Strisovsky, K., Zettl, M., Hu, L., Lemberg, M. K. and Freeman, M. (2011) Mammalian EGF receptor activation by the rhomboid protease RHBDL2. EMBO Rep. 12, 421-427. https://doi.org/10.1038/embor.2011.50
  2. Adrain, C., Zettl, M., Christova, Y., Taylor, N. and Freeman, M. (2012) Tumor necrosis factor signaling requires iRhom2 to promote trafficking and activation of TACE. Science 335, 225-228. https://doi.org/10.1126/science.1214400
  3. Basso, F., Freeman, L. A., Ko, C., Joyce, C., Amar, M. J., Shamburek, R. D., Tansey, T., Thomas, F., Wu, J., Paigen, B., Remaley, A. T., Santamarina-Fojo, S. and Brewer, H. B., Jr. (2007) Hepatic ABCG5/G8 overexpression reduces apoB-lipoproteins and atherosclerosis when cholesterol absorption is inhibited. J. Lipid Res. 48, 114-126. https://doi.org/10.1194/jlr.M600353-JLR200
  4. Bergbold, N. and Lemberg, M. K. (2013) Emerging role of rhomboid family proteins in mammalian biology and disease. Biochim. Biophys. Acta 1828, 2840-2848. https://doi.org/10.1016/j.bbamem.2013.03.025
  5. Black, R. A., Rauch, C. T., Kozlosky, C. J., Peschon, J. J., Slack, J. L., Wolfson, M. F., Castner, B. J., Stocking, K. L., Reddy, P., Srinivasan, S., Nelson, N., Boiani, N., Schooley, K. A., Gerhart, M., Davis, R., Fitzner, J. N., Johnson, R. S., Paxton, R. J., March, C. J. and Cerretti, D. P. (1997) A metalloproteinase disintegrin that releases tumour-necrosis factor-${\alpha}$ from cells. Nature 385, 729-733. https://doi.org/10.1038/385729a0
  6. Christova, Y., Adrain, C., Bambrough, P., Ibrahim, A. and Freeman, M. (2013) Mammalian iRhoms have distinct physiological functions including an essential role in TACE regulation. EMBO Rep. 14, 884-890. https://doi.org/10.1038/embor.2013.128
  7. Dunnett, S. B., Torres, E. M. and Annett, L. E. (1998) A lateralised grip strength test to evaluate unilateral nigrostriatal lesions in rats. Neurosci. Lett. 246, 1-4. https://doi.org/10.1016/S0304-3940(98)00194-3
  8. Finn, R. D., Mistry, J., Tate, J., Coggill, P., Heger, A., Pollington, J. E., Gavin, O. L., Gunasekaran, P., Ceric, G., Forslund, K., Holm, L., Sonnhammer, E. L., Eddy, S. R. and Bateman, A. (2010) The Pfam protein families database. Nucleic Acids Res. 38, D211-D222. https://doi.org/10.1093/nar/gkp985
  9. Fleig, L., Bergbold, N., Sahasrabudhe, P., Geiger, B., Kaltak, L. and Lemberg, M. K. (2012) Ubiquitin-dependent intramembrane rhomboid protease promotes ERAD of membrane proteins. Mol. Cell 47, 558-569. https://doi.org/10.1016/j.molcel.2012.06.008
  10. Freeman, M. (1994) The spitz gene is required for photoreceptor determination in the Drosophila eye where it interacts with the EGF receptor. Mech. Dev. 48, 25-33. https://doi.org/10.1016/0925-4773(94)90003-5
  11. Freeman, M. (2014) The rhomboid-like superfamily: molecular mechanisms and biological roles. Annu. Rev. Cell Dev. Biol. 30, 235-254. https://doi.org/10.1146/annurev-cellbio-100913-012944
  12. Ha, Y., Akiyama, Y. and Xue, Y. (2013) Structure and mechanism of rhomboid protease. J. Biol. Chem. 288, 15430-15436. https://doi.org/10.1074/jbc.R112.422378
  13. Haglund, K. and Dikic, I. (2012) The role of ubiquitylation in receptor endocytosis and endosomal sorting. J. Cell Sci. 125, 265-275. https://doi.org/10.1242/jcs.091280
  14. Hall, K. C. and Blobel, C. P. (2012) Interleukin-1 stimulates ADAM17 through a mechanism independent of its cytoplasmic domain or phosphorylation at threonine 735. PLoS ONE 7, e31600. https://doi.org/10.1371/journal.pone.0031600
  15. Hara, S., Tamano, M., Yamashita, S., Kato, T., Saito, T., Sakuma, T., Yamamoto, T., Inui, M. and Takada, S. (2015) Generation of mutant mice via the CRISPR/Cas9 system using FokI-dCas9. Sci. Rep. 5, 11221. https://doi.org/10.1038/srep11221
  16. Hosur, V., Johnson, K. R., Burzenski, L. M., Stearns, T. M., Maser, R. S. and Shultz, L. D. (2014) Rhbdf2 mutations increase its protein stability and drive EGFR hyperactivation through enhanced secretion of amphiregulin. Proc. Natl. Acad. Sci. U.S.A. 111, E2200-2209. https://doi.org/10.1073/pnas.1323908111
  17. Issuree, P. D., Maretzky, T., McIlwain, D. R., Monette, S., Qing, X., Lang, P. A., Swendeman, S. L., Park-Min, K. H., Binder, N., Kalliolias, G. D., Yarilina, A., Horiuchi, K., Ivashkiv, L. B., Mak, T. W., Salmon, J. E. and Blobel, C. P. (2013) iRHOM2 is a critical pathogenic mediator of inflammatory arthritis. J. Clin. Invest. 123, 928- 932.
  18. Koonin, E. V., Makarova, K. S., Rogozin, I. B., Davidovic, L., Letellier, M. C. and Pellegrini, L. (2003) The rhomboids: a nearly ubiquitous family of intramembrane serine proteases that probably evolved by multiple ancient horizontal gene transfers. Genome Biol. 4, R19. https://doi.org/10.1186/gb-2003-4-3-r19
  19. Lee, M. Y., Nam, K. H. and Choi, K. C. (2016) iRhoms; Its functions and essential roles. Biomol. Ther. (Seoul) 24, 109-114. https://doi.org/10.4062/biomolther.2015.149
  20. Lemberg, M. K. and Freeman, M. (2007) Functional and evolutionary implications of enhanced genomic analysis of rhomboid intramembrane proteases. Genome Res. 17, 1634-1646. https://doi.org/10.1101/gr.6425307
  21. Lemberg, M. K., Menendez, J., Misik, A., Garcia, M., Koth, C. M. and Freeman, M. (2005) Mechanism of intramembrane proteolysis investigated with purified rhomboid proteases. EMBO J. 24, 464-472. https://doi.org/10.1038/sj.emboj.7600537
  22. Li, X., Maretzky, T., Weskamp, G., Monette, S., Qing, X., Issuree, P. D., Crawford, H. C., McIlwain, D. R., Mak, T. W., Salmon, J. E. and Blobel, C. P. (2015) iRhoms 1 and 2 are essential upstream regulators of ADAM17-dependent EGFR signaling. Proc. Natl. Acad. Sci. U.S.A. 112, 6080-6085. https://doi.org/10.1073/pnas.1505649112
  23. Liao, H. J. and Carpenter, G. (2012) Regulated intramembrane cleavage of the EGF receptor. Traffic 13, 1106-1112. https://doi.org/10.1111/j.1600-0854.2012.01371.x
  24. Lim, S. M., Lee, S. Y., Jeong, J. J., Choi, H. S., Chang, H. B. and Kim, D. H. (2016) DW2007 ameliorates colitis and rheumatoid arthritis in mice by correcting Th17/Treg imbalance and inhibiting NF-${\kappa}B$ activation. Biomol. Ther. (Seoul) 24, 638-649. https://doi.org/10.4062/biomolther.2016.018
  25. McIlwain, D. R., Lang, P. A., Maretzky, T., Hamada, K., Ohishi, K., Maney, S. K., Berger, T., Murthy, A., Duncan, G., Xu, H. C., Lang, K. S., Haussinger, D., Wakeham, A., Itie-Youten, A., Khokha, R., Ohashi, P. S., Blobel, C. P. and Mak, T. W. (2012) iRhom2 regulation of TACE controls TNF-mediated protection against Listeria and responses to LPS. Science 335, 229-232. https://doi.org/10.1126/science.1214448
  26. Pascall, J. C. and Brown, K. D. (1998) Characterization of a mammalian cDNA encoding a protein with high sequence similarity to the Drosophila regulatory protein Rhomboid. FEBS Lett. 429, 337-340. https://doi.org/10.1016/S0014-5793(98)00622-X
  27. Peschon, J. J., Slack, J. L., Reddy, P., Stocking, K. L., Sunnarborg, S. W., Lee, D. C., Russell, W. E., Castner, B. J., Johnson, R. S., Fitzner, J. N., Boyce, R. W., Nelson, N., Kozlosky, C. J., Wolfson, M. F., Rauch, C. T., Cerretti, D. P., Paxton, R. J., March, C. J. and Black, R. A. (1998) An essential role for ectodomain shedding in mammalian development. Science 282, 1281-1284. https://doi.org/10.1126/science.282.5392.1281
  28. Puente, X. S., Sanchez, L. M., Overall, C. M. and Lopez-Otin, C. (2003) Human and mouse proteases: a comparative genomic approach. Nat. Rev. Genet. 4, 544-558. https://doi.org/10.1038/nrg1111
  29. Rutledge, B. J., Zhang, K., Bier, E., Jan, Y. N. and Perrimon, N. (1992) The Drosophila spitz gene encodes a putative EGF-like growth factor involved in dorsal-ventral axis formation and neurogenesis. Genes Dev. 6, 1503-1517. https://doi.org/10.1101/gad.6.8.1503
  30. Sahin, U. and Blobel, C. P. (2007) Ectodomain shedding of the EGFreceptor ligand epigen is mediated by ADAM17. FEBS Lett. 581, 41-44. https://doi.org/10.1016/j.febslet.2006.11.074
  31. Sahin, U., Weskamp, G., Kelly, K., Zhou, H. M., Higashiyama, S., Peschon, J., Hartmann, D., Saftig, P. and Blobel, C. P. (2004) Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. J. Cell Biol. 164, 769-779. https://doi.org/10.1083/jcb.200307137
  32. Schweitzer, R., Shaharabany, M., Seger, R. and Shilo, B. Z. (1995) Secreted Spitz triggers the DER signaling pathway and is a limiting component in embryonic ventral ectoderm determination. Genes Dev. 9, 1518-1529. https://doi.org/10.1101/gad.9.12.1518
  33. Siggs, O. M., Xiao, N., Wang, Y., Shi, H., Tomisato, W., Li, X., Xia, Y. and Beutler, B. (2012) iRhom2 is required for the secretion of mouse TNF${\alpha}$. Blood 119, 5769-5771. https://doi.org/10.1182/blood-2012-03-417949
  34. Sturtevant, M. A., Roark, M. and Bier, E. (1993) The Drosophila rhomboid gene mediates the localized formation of wing veins and interacts genetically with components of the EGF-R signaling pathway. Genes Dev. 7, 961-973. https://doi.org/10.1101/gad.7.6.961
  35. Urban, S., Lee, J. R. and Freeman, M. (2001) Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases. Cell 107, 173-182. https://doi.org/10.1016/S0092-8674(01)00525-6
  36. Urban, S., Schlieper, D. and Freeman, M. (2002) Conservation of intramembrane proteolytic activity and substrate specificity in prokaryotic and eukaryotic rhomboids. Curr. Biol. 12, 1507-1512. https://doi.org/10.1016/S0960-9822(02)01092-8
  37. Urban, S. and Wolfe, M. S. (2005) Reconstitution of intramembrane proteolysis in vitro reveals that pure rhomboid is sufficient for catalysis and specificity. Proc. Natl. Acad. Sci. U.S.A. 102, 1883-1888. https://doi.org/10.1073/pnas.0408306102

Cited by

  1. Novel functions of inactive rhomboid proteins in immunity and disease vol.106, pp.4, 2018, https://doi.org/10.1002/jlb.3vmr0219-069r
  2. Differential Induction of the ADAM17 Regulators iRhom1 and 2 in Endothelial Cells vol.7, pp.None, 2018, https://doi.org/10.3389/fcvm.2020.610344