DOI QR코드

DOI QR Code

A Study on Various Structural Characteristics of 100W Linear Generator for Vehicle Suspension

차량 현가장치적용 100W급 선형발전기의 다양한 구조 특성

  • Kim, Ji-Hye (Division of Mechanical Engineering, Yeungnam University) ;
  • Kim, Jin-Ho (Division of Mechanical Engineering, Yeungnam University)
  • 김지혜 (영남대학교 기계공학부) ;
  • 김진호 (영남대학교 기계공학부)
  • Received : 2018.01.17
  • Accepted : 2018.04.06
  • Published : 2018.04.30

Abstract

Recently, the demand for electric energy has been increasing due to the spread of hybrid electric vehicles. In this study, to meet this demand, the ANSYS MAXWELL electromagnetic simulation system was used to compare the power generation characteristics of three types of suspension system that can generate electricity using energy harvesting technology. Next, the optimal design was determined for each model by using the commercial PIDO (Process Integration and Design Optimization) tool, PIANO (Process Integration, Automation and Optimization). We selected three design variables and constructed an approximate model based on the experimental design method through electromagnetic analysis for 18 experimental points derived from Orthogonal Arrays among the experimental design methods. Then, we determined the optimal design by applying the Evolutionary Algorithm. Finally, the optimal design results were verified by electromagnetic simulation of the optimum design result model using the same analysis conditions as those of the initial model. After comparing the power generation characteristics for the optimal structure for each linear generator model, the maximum power generation amounts in the 8pole-8slot, 12pole-12slot, and 16pole-16slot structures were 366.5W, 466.7W and 579.7W, respectively, and it was found that as the number of slots and poles increases, the power generation increases.

최근 하이브리드 전기자동차의 보급 확대에 따라 전기에너지 수요가 증가하고 있다. 본 연구에서는 전기에너지 수요에 대응하기 위해 에너지 하베스팅 기술을 이용해 자가발전이 가능한 3가지 구조의 현가장치 적용 선형 발전 시스템을 ANSYS MAXWELL을 사용하여 전자기 시뮬레이션을 통해 각 구조의 발전 특성을 비교 분석 하였다. 다음으로 각 모델에 대해 상용 PIDO(Process Integration and Design Optimization)툴인 PIAnO(Process Integration, Automation and Optimization)을 사용하여 최적설계를 수행하였다. 3가지 설계변수를 선정하여 실험계획법 기법 중 직교 배열표(Orthogonal Array)를 이용해 도출한 18개의 실험 점에 대해 전자기 해석을 통해 완성한 실험계획법을 바탕으로 근사 모델을 생성하였으며 진화 알고리즘(Evolutionary Algorithm)을 이용한 최적 설계를 수행하였다. 마지막으로 초기 모델과 동일한 해석 조건을 사용해 최적 설계 결과 모델에 대한 전자기 시뮬레이션을 통해 최적설계 결과를 검증 하였다. 각 선형 발전기 모델에 대해 최적의 구조에 대한 발전 특성을 비교한 결과 8pole-8slot, 12pole-12slot, 16pole-16slot 구조에서 최대 발전량은 각각 366.5W, 466.7W, 579.7W로 slot, pole 조합 수가 많아질수록 발전량이 증가하는 결과를 확인하였다.

Keywords

References

  1. G. Manla, N. M. White, J. Tudor, "Harvesting Energy from Vehicle Wheels," Solid-State Sensors, Actuators and Microsystems Conference, pp. 1389-1392, 2009. DOI: https://doi.org/10.1109/SENSOR.2009.5285831
  2. M. Wischke, M. Masur, P. Woias, "A Hybrid Generator for Vibration Energy Harvesting Applications," 15th International Conference on Solid-State Sensors, Actuators and Microsystems, pp. 521-524, 2009.
  3. Z. Li, L. Zuo, J. Kuang, and G. Luhrs, "Energy-harvesting shock absorber with a mechanical motion rectifier," Smart Materials and Structures, vol. 22, pp. 1-10, 2012. DOI: https://doi.org/10.1115/DETC2012-71386
  4. Ehsan Asadi, Roberto Ribeiro, Mir Behrad Khamesee and Amir Khajepour "A new adaptive hybrid electromagnetic damper: modelling, optimization, and experiment," IOP Int. Smart Materials and Structures, vol. 24, no. 7, 2015.
  5. Martins, I., Esteves, J., Marques, G.D. and Silva, F.P.D., "Permanentmagnets linear actuators applicability in automobile active suspensions," IEEE Transaction on Vehicular Technology, vol. 55, no. 1, pp. 86-94, 2006. DOI: https://doi.org/10.1109/TVT.2005.861167
  6. W. C. Kruckemeyer, H. C. Buchanan, Jr., and W. V. Fannin, "Rotational actuator for vehicle suspension damper," U. S. Patent 4644200, Feb. 17, 1987.
  7. Zhang Y, Huang K, Yu F, Gu Y and Li D "Experimental verification of energy-regenerative feasibility for an automotive electrical suspension system," IEEE Int. Conference on Vehicular Electronics and Safety (Beijing,) 2007.
  8. Avadhany S, Abel P, Tarasov V and Anderson Z, "Regenerative shock absorber," US Patent 0260935, 2000.
  9. Karnopp D 1989 "Permanent magnet linear motors used as variable mechanical dampers for vehicle suspensions," Vehicle System Dynamics, vol. 18, Iss. 4, pp. 187-200, 1989. DOI: https://doi.org/10.1080/00423118908968918
  10. L Zuo, B Scully, J Shestani, Y Zhou "Design and characterization of an electromagnetic energy harvester for vehicle suspensions," Smart Materials and Structures 19, 2010. DOI: https://doi.org/10.1088/0964-1726/19/4/045003
  11. Chao Chen and Wei-Hsin Liao "A self-sensing magnetorheological damper with power generation," Smart Materials and Structures, vol. 21, 2012.
  12. Xiudong Tang, Teng Lin, and Lei Zou "Design and optimization of a tubular linear electromagnetic vibration energy harvester," IEEE Transactions On Mechanics, vol. 19, 2014.
  13. Kim, J. G. and Lee K. H, "A Structural Design of Microgyroscope Using Kriging Approximation Model," J. KSMPE, vol. 7, no. 4, pp. 149-154, 2008.