DOI QR코드

DOI QR Code

대학 여자 운동선수의 셀레늄 및 아연 영양상태

Assessment of selenium and zinc status in female collegiate athletes

  • 이옥희 (용인대학교 식품영양학과)
  • Lee, Okhee (Department of Food Science and Nutrition, Yong In University)
  • 투고 : 2018.02.06
  • 심사 : 2018.03.16
  • 발행 : 2018.04.30

초록

본 연구는 여자 대학선수들의 혈청 셀레늄과 아연 수준을 일반 여대생과 비교 평가하고, 열량영양소 및 항산화영양소 섭취와의 관계를 평가하고자 하였다. 본 연구는 체육대학의 여자 에어로빅 및 유도선수와 운동을 규칙적으로 하지 않는 일반 여대생을 대상으로 식사섭취 조사와 혈청의 두 미량 무기질의 농도를 측정하였다. 에너지 섭취량은 에어로빅과 유도선수가 각각 2,151.0 kcal와 2,347.7 kcal를 나타내어 일반 여대생에 비해 유의적으로 높았다 그러나 체중 1 kg당 하루 에너지 섭취량은 선수와 일반 여대생간에 유의적 차이가 없었지만 유도선수의 경우 35.8 kcal에 불과하였다. 지질 섭취량은 일반 여대생에 비해 두 선수군에서 유의적으로 높은 반면에, 단백질과 탄수화물의 섭취량은 선수와 일반 여대생 사이에 유의적 차이는 없었다. 지질 중 포화지방산 섭취는 유도선수가 일반 여대생에 비해 유의적으로 높은 섭취를 보였다. 비타민 A, E와 비타민 C의 섭취량은 에어로빅 선수가 일반 여대생에 비해 유의적으로 높으며 INQ도 1이상을 보였다. 그러나 유도선수의 경우 비타민 A와 C의 INQ가 1이하를 나타내어 비타민 A와 C의 영양적 질이 부적절함을 보였다. 철의 섭취량은 에어로빅 선수가 일반 여대생에 비해 유의적으로 높았으나, 셀레늄과 아연 섭취는 유의적 차이가 없었다. 그러나 철과 아연의 INQ는 유도선수에서 유의적으로 낮았다. 에어로빅과 유도선수의 셀레늄의 평균 섭취량은 각각 $106.2{\mu}g$$101.9{\mu}g$를 나타내었고, 아연 섭취량은 각각 10.7 mg과 9.3 mg으로 일반 여대생과 비교하여 유의적 차이는 보이지 않았다. 혈청 셀레늄의 평균 농도는 유도선수가 $10.7{\mu}g/dl$을 보여 에어로빅 선수에 비해 유의적으로 낮았지만 이 들 중 셀레늄 결핍자는 없었다. 에어로빅과 유도선수의 평균 혈청 아연농도는 각각 $96.1{\mu}g/dl$$90.2{\mu}g/dl$으로서 일반 여대생과 유사하였지만, 에어로빅에서는 아연 결핍이 없으나 유도선수에서 아연 결핍율은 각각 14.3%를 보였다. 혈청 셀레늄농도의 변이는 나이 포화지방산, 비타민 E와 셀레늄 섭취에 의해 35.5%를 설명할 수 있으며, 나이를 제외한 식사요인에 의해서 33.3%를 설명할 수 있었다. 혈청 아연농도의 변이는 포화지방산 섭취에 의해 14.7%를 설명함으로써, 특히 포화지방산 섭취가 두 미량 무기질의 혈청 수준에 부정적인 영향을 줌을 보였다. 결론적으로 여자 대학선수들의 인체 셀레늄 상태는 양호하나 일부 선수에서 아연 영양부족이 우려되며 두 미량 무기질 수준을 유지하기 위해 포화지방산의 섭취를 줄이는 영양개선이 필요함으로 보였다. 나아가 셀레늄의 식사섭취와 인체 수준과의 관계를 명확하게 평가하기 위해서는 식사를 통한 셀레늄 섭취의 정확히 평가가 필요하며, 이에는 식품의 셀레늄 데이터베이스의 개선이 필요한 것으로 사료되며, 아연 영양상태 관련인자를 평가하기 위해서는 아연의 생체 이용률을 고려하는 자료가 필요할 것이다.

Purpose: This study was aimed to assess selenium and zinc status in female collegiate athletes and their relationship with dietary intake. Methods: Female collegiate athletic groups of judo and aerobics, and healthy sedentary collegiate females were recruited for this study and their serum selenium and zinc contents were measured by the neutron activation analysis (NAA) method. In addition, the dietary intake of subjects was measured using the two days 24-hour recall method. Results: Serum selenium in judo athletes was $10.7{\mu}g/dl$, which was significantly lower than that of aerobic athletes ($12.2{\mu}g/dl$), but not different from that of the sedentary group ($11.4{\mu}g/dl$). Additionally, serum zinc levels were $96.1{\mu}g/dl$ and $90.2{\mu}g/dl$ in aerobic and judo athletes, respectively, which did not differ significantly. Moreover, dietary selenium and zinc intake of the athletic groups did not differ significantly from that of the sedentary female group. Overall, 33.3% of the serum selenium concentration variation was explained by the intake of vitamin E, selenium and saturated fatty acids, while 14.7% of the serum zinc level variation was explained by the intake of saturated fatty acids. The strongest dietary indicator for serum selenium and zinc levels was saturated fatty acids intake. Conclusion: Judo athletes appear to have lower selenium status than aerobic athletes, suggesting different body selenium status according to sport type. To maintain body selenium and zinc levels, the dietary intake of saturated fatty acids should be decreased.

키워드

참고문헌

  1. Gross M, Baum O. Supplemental antioxidants and adaptation to physical training [Internet]. Boca Raton (FL): CRC Press/Taylor & Francis; 2015 [cited 2017 Dec 20]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK299059/.
  2. Koury JC, de OLilveria AV Jr, Portella ES, de OLilveria CF, Lopes GC, Donangelo CM. Zinc and copper biochemical indices of antioxidant status in elite athletes of different modalities. Int J Sport Nutr Exerc Metab 2004; 14(3): 358-372. https://doi.org/10.1123/ijsnem.14.3.358
  3. Kilic M, Baltaci AK, Gunay M, Gokbel H, Okudan N, Cicioglu I. The effect of exhaustion exercise on thyroid hormones and testosterone levels of elite athletes receiving oral zinc. Neuroendocrinol Lett 2006; 27(1-2): 247-252.
  4. Burk RF. Selenium, an antioxidant nutrient. Nutr Clin Care 2002; 5(2): 75-79. https://doi.org/10.1046/j.1523-5408.2002.00006.x
  5. Kohrl J, Brigelius-Flohe R, Bock A, Gartner R, Meyer O, Flohe L. Selenium in biology: facts and medical perspectives. Biol Chem 2000; 381(9-10): 849-864. https://doi.org/10.1515/BC.2000.107
  6. Xu LQ, Sen WX, Xiong QH, Huang HM, Schramel P. Selenium in Kashin-Beck disease areas. Biol Trace Elem Res 1991; 31(1): 1-9. https://doi.org/10.1007/BF02990354
  7. Ministry of Health and Welfare (KR); The Korean Nutrition Society. Dietary reference intakes for Koreans 2015. Sejong: Ministry of Health and Welfare; 2016.
  8. Margaritis I, Rousseau AS. Does physical exercise modify antioxidant requirements? Nutr Res Rev 2008; 21(1): 3-12. https://doi.org/10.1017/S0954422408018076
  9. Yan Y, Drenowatz C, Hand GA, Shook RP, Hurley TG, Hebert JR, Blair SN. Is nutrient intake associated with physical activity levels in healthy young adults? Public Health Nutr 2016; 19(11): 1983-1989. https://doi.org/10.1017/S1368980015003717
  10. Ozturk A, Baltaci AK, Mogulkoc R, Oztekin E, Sivrikaya A, Kurtoglu E, Kul A. Effects of zinc deficiency and supplementation on malondialdehyde and gluthathione levels in blood and tissues of rats performing swimming exercise. Biol Trace Elem Res 2003; 94(2): 157-166. https://doi.org/10.1385/BTER:94:2:157
  11. Peake JM, Gerrard DF, Griffin JF. Plasma zinc and immune markers in runners in response to a moderate increase in training volume. Int J Sports Med 2003; 24(3): 212-216. https://doi.org/10.1055/s-2003-39094
  12. Maxwell C, Volpe SL. Effect of zinc supplementation on thyroid hormone function. A case study of two college females. Ann Nutr Metab 2007; 51(2): 188-194. https://doi.org/10.1159/000103324
  13. Clarkson PM. Minerals: exercise performance and supplementation in athletes. J Sports Sci 1991; 9(sup1): 91-116. https://doi.org/10.1080/02640419108729869
  14. Burkhart SJ, Pelly FE. Dietary intake of athletes seeking nutrition advice at a major international competition. Nutrients 2016; 8(10): E638. https://doi.org/10.3390/nu8100638
  15. Rural Development Administration (KR); The Korean Society of Community Nutrition. Life-size nutrition guide for silver generation. Paju: Kyomoonsa; 2010.
  16. American Dietetic Association; Dietitians of Canada; American College of Sports Medicine, Rodriguez NR, Di Marco NM, Langley S. American College of Sports Medicine position stand. Nutrition and athletic performance. Med Sci Sports Exerc 2009; 41(3): 709-731. https://doi.org/10.1249/MSS.0b013e31890eb86
  17. Wierniuk A, Wlodarek D. Assessment of physical activity, energy expenditure and energy intakes of young men practicing aerobic sports. Rocz Panstw Zakl Hig 2014; 65(4): 353-357.
  18. Loucks AB. Energy balance and body composition in sports and exercise. J Sports Sci 2004; 22(1): 1-14. https://doi.org/10.1080/0264041031000140518
  19. Kim EK, Kim GS, Park JS. Comparison of activity factor, predicted resting metabolic rate, and intakes of energy and nutrients between athletic and non-athletic high school students. J Korean Diet Assoc 2009; 15(1): 52-68.
  20. Kang HS, Kim SJ. Study on the nutrient intakes status of the female athletics in Korea. J Exerc Nutr Biochem 2003; 7(2): 167-174.
  21. Mountjoy M, Sundgot-Borgen J, Burke L, Carter S, Constantini N, Lebrun C, Meyer N, Sherman R, Steffen K, Budgett R, Ljungqvist A. The IOC consensus statement: beyond the female athlete triad--relative energy deficiency in sport (RED-S). Br J Sports Med 2014; 48(7): 491-497. https://doi.org/10.1136/bjsports-2014-093502
  22. Gleeson M, Bishop NC. Elite athlete immunology: importance of nutrition. Int J Sports Med 2000; 21 Suppl 1: S44-S50. https://doi.org/10.1055/s-2000-1451
  23. Thomas DT, Erdman KA, Burke LM. Position of the academy of nutrition and dietetics, dietitians of Canada, and the American College of Sports Medicine: nutrition and athletic performance. J Acad Nutr Diet 2016; 116(3): 501-528. https://doi.org/10.1016/j.jand.2015.12.006
  24. Institute of Medicine (US); Committee on Mineral Requirements for Cognitive and physical performance of military personnel; Committee on Military Nutrition Research. Mineral requirements for military personnel: levels needed for cognitive and physical performance during garrison training [Internet]. Washington, D.C.: The National Academies Press; 2006 [cited 2018 Jan 5]. Available from: https://www.nap.edu/catalog/11610/.
  25. Micheletti A, Rossi R, Rufini S. Zinc status in athletes: relation to diet and exercise. Sports Med 2001; 31(8): 577-582. https://doi.org/10.2165/00007256-200131080-00002
  26. Martin L, Lambeth A, Scott D. Nutritional practices of national female soccer players: analysis and recommendations. J Sports Sci Med 2006; 5(1): 130-137.
  27. Bae YJ, Kim MH, Yeon JY. Evaluation of dietary zinc, copper, manganese and selenium intake in female university students. Korean J Community Nutr 2012; 17(2): 146-155. https://doi.org/10.5720/kjcn.2012.17.2.146
  28. Thomson CD. Assessment of requirements for selenium and adequacy of selenium status: a review. Eur J Clin Nutr 2004; 58(3): 391-402. https://doi.org/10.1038/sj.ejcn.1601800
  29. Xia Y, Hill KE, Li P, Xu J, Zhou D, Motley AK, Wang L, Byrne DW, Burk RF. Optimization of selenoprotein P and other plasma selenium biomarkers for the assessment of the selenium nutritional requirement: a placebo-controlled, double-blind study of selenomethionine supplementation in selenium-deficient Chinese subjects. Am J Clin Nutr 2010; 92(3): 525-531. https://doi.org/10.3945/ajcn.2010.29642
  30. He F, Li J, Liu Z, Chuang CC, Yang W, Zuo L. Redox mechanism of reactive oxygen species in exercise. Front Physiol 2016; 7: 486.
  31. Garatachea N, Garcia-Lopez D, Bernal A, Almar M, Gonzalez-Gallego J. Oxidative stress response to isometric exercise in women: effect of age and exercise intensity. Int SportMed J 2012; 13(1): 85-95.
  32. Nikolaidis MG, Paschalis V, Giakas G, Fatouros IG, Koutedakis Y, Kouretas D, Jamurtas AZ. Decreased blood oxidative stress after repeated muscle-damaging exercise. Med Sci Sports Exerc 2007; 39(7): 1080-1089. https://doi.org/10.1249/mss.0b013e31804ca10c
  33. Silva LA, Pinho CA, Silveira PC, Tuon T, De Souza CT, Dal-Pizzol F, Pinho RA. Vitamin E supplementation decreases muscular and oxidative damage but not inflammatory response induced by eccentric contraction. J Physiol Sci 2010; 60(1): 51-57. https://doi.org/10.1007/s12576-009-0065-3
  34. Myles IA. Fast food fever: reviewing the impacts of the western diet on immunity. Nutr J 2014; 13(1): 61-77. https://doi.org/10.1186/1475-2891-13-61
  35. McCarthy CG, Farney TM, Canale RE, Dessoulavy ME, Bloomer RJ. High-fat feeding, but not strenuous exercise, increases blood oxidative stress in trained men. Appl Physiol Nutr Metab 2013; 38(1): 33-41. https://doi.org/10.1139/apnm-2012-0222
  36. Hotz C, Peerson JM, Brown KH. Suggested lower cutoffs of serum zinc concentrations for assessing zinc status: reanalysis of the second National Health and Nutrition Examination Survey data (1976-1980). Am J Clin Nutr 2003; 78(4): 756-764. https://doi.org/10.1093/ajcn/78.4.756
  37. Chandyo RK, Strand TA, Mathisen M, Ulak M, Adhikari RK, Bolann BJ, Sommerfelt H. Zinc deficiency is common among healthy women of reproductive age in Bhaktapur, Nepal. J Nutr 2009; 139(3): 594-597. https://doi.org/10.3945/jn.108.102111
  38. Lukaski HC. Magnesium, zinc, and chromium nutriture and athletic performance. Can J Appl Physiol 2001; 26 Suppl: S13-S22. https://doi.org/10.1139/h2001-038
  39. Granell J. Zinc and copper changes in serum and urine after aerobic endurance and muscular strength exercise. J Sports Med Phys Fitness 2014; 54(2): 232-237.
  40. Soria M, Gonzailes-Haro C, Anson M, Lopez-Colon JL, Escanero JH. Plasma levels of trace elements and exercise induced stress hormone in well trained athletes. J Trace Elem Med Biol 2015; 31: 113-119. https://doi.org/10.1016/j.jtemb.2015.04.004
  41. Baltaci AK, Ozyurek K, Mogulkoc R, Kurtoglu E, Ozkan Y, Celik I. Effects of zinc deficiency and supplementation on the glycogen contents of liver and plasma lactate and leptin level of rats performing swimming exercise. Biol Trace Elem Res 2003; 96(1-3): 227-236. https://doi.org/10.1385/BTER:96:1-3:227
  42. Brand IA, Kleineke J. Intracellular zinc movement and its effect on the carbohydrate metabolism of isolated rat hepatocytes. J Biol Chem 1996; 271(4): 1941-1949. https://doi.org/10.1074/jbc.271.4.1941
  43. Chait A, Kim F. Saturated Fatty acids and inflammation: who pays the toll? Arterioscler Thromb Vasc Biol 2010; 30(4): 692-693. https://doi.org/10.1161/ATVBAHA.110.203984
  44. Hong SR, Lee SM, Lim NR, Chung HW, Ahn HS. Association between hair mineral and age, BMI and nutrient intakes among Korean female adults. Nutr Res Pract 2009; 3(3): 212-219. https://doi.org/10.4162/nrp.2009.3.3.212
  45. Nuviala RJ, Lapieza MG, Bernal E. Magnesium, zinc, and copper status in women involved in different sports. Int J Sport Nutr 1999; 9(3): 295-309. https://doi.org/10.1123/ijsn.9.3.295
  46. Do MS, Lomeda RR, Cho YE, Kwun IS. The decreased molar ratio of phytate: zinc improved zinc nutriture in South Koreans for the past 30 years(1969-1998). Nutr Res Pract 2007; 1(4): 356-362. https://doi.org/10.4162/nrp.2007.1.4.356