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REAL HYPERSURFACES WITH MIAO-TAM CRITICAL
METRICS OF COMPLEX SPACE FORMS

X1AOMIN CHEN

ABSTRACT. Let M be a real hypersurface of a complex space form with
constant curvature c. In this paper, we study the hypersurface M admit-
ting Miao-Tam critical metric, i.e., the induced metric g on M satisfies
the equation: —(Ag\)g + VgA — ARic = g, where )\ is a smooth function
on M. At first, for the case where M is Hopf, ¢ = 0 and ¢ # 0 are con-
sidered respectively. For the non-Hopf case, we prove that the ruled real
hypersurfaces of non-flat complex space forms do not admit Miao-Tam
critical metrics. Finally, it is proved that a compact hypersurface of a
complex Euclidean space admitting Miao-Tam critical metric with A > 0
or A < 0 is a sphere and a compact hypersurface of a non-flat complex
space form does not exist such a critical metric.

1. Introduction

Recall that on a compact Riemannian manifold (M",g), n > 2 with a
smooth boundary dM the metric g is referred as Miao-Tam critical metric
if there exists a smooth function A : M™ — R such that

(1) —(AgA)g + V2A = ARic =g

on M and A = 0 on M, where Ag,Vg)\ are the Laplacian, Hessian opera-
tor with respect to the metric g and Ric is the (0,2) Ricci tensor of g. The
function A is known as the potential function. The equation (1) is called as
Miao-Tam equation. Applying this equation, Miao-Tam in [12] classified Ein-
stein and conformally flat Riemannian manifolds. In particular, they proved
that any Riemannian metric g satisfying the equation (1) must have constant
scalar curvature. Recently, Patra-Ghosh studied the Miao-Tam equation on
certain class of odd dimensional Riemannian manifolds, namely contact metric
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manifolds (see [15,16]). It was proved that a complete K-contact metric sat-
isfying the Miao-Tam equation is isometric to a unit sphere. Wang-Wang [18]
also considered an almost Kenmotsu manifold with Miao-Tam critical metric.

An n-dimensional complex space form is an n-dimensional Kéhler manifold
with constant sectional curvature c. A complete and simple connected complex
space form is complex analytically isometric to a complex projective space CP™
if ¢ > 0, a complex hyperbolic space CH" if ¢ < 0, a complex Euclidean
space C" if ¢ = 0. The complex projective and complezcv hyperbolic spaces
are called non-flat complex space forms and denoted by M"(c). Let M be a
real hypersurface of a complex space form, then there exists an almost contact
structure (¢,7,,g) on M induced from the complex space form. In particular,
if £ is an eigenvector of shape operator A, then M is called a Hopf hypersurface.
Since there are no Einstein real hypersurfaces in non-flat complex space forms
([3,13]), Cho and Kimura [4,5] considered a generalization of Einstein metric,
called Ricci soliton, which satisfies

1
§£vg + Ric — pg =0,

where V and p are the potential vector field and some constant on M, respec-
tively. They proved that a compact contact-type hypersurface with a Ricci
soliton in C™ is a sphere and a compact Hopf hypersurface in a non-flat com-
plex space form does not admit a Ricci soliton.

From the Miao-Tam equation (1), we remark that the Miao-Tam critical
metric can also be viewed as a generalization of the Einstein metric since the
critical metric will become an Einstein metric if the potential function A is
constant. Thus the above results intrigue us to study the real hypersurfaces
admitting Miao-Tam critical metrics of complex space forms. In this article, we
mainly study the Hopf hypersurfaces in complex space forms as well as a class
of non-Hopf hypersurfaces in non-flat complex space forms. For a compact real
hypersurface with Miao-Tam critical metric, we also get a result.

This paper is organized as follows: In Section 2 we recall some basic concepts
and related results. In Section 3, we consider respectively the Hopf hyper-
surfaces with Miao-Tam critical metrics of non-flat complex space forms and
complex Euclidean spaces, and one class of non-Hopf hypersurfaces of non-flat
complex space forms is considered in Section 4. In the last section we will prove
the result of compact real hypersurfaces with Miao-Tam critical metrics.

2. Some basic concepts and related results

Let (M",3) be a complex n-dimensional Kéhler manifold and M be an
immersed, without boundary, real hypersurfafga of M™ with the induced metric
g. Denote by J the complex structure on M™. There exists a local defined

unit normal vector field N on M and we write £ := —JN by the structure
vector field of M. An induced one-form 7 is defined by n(-) = g(J-, N), which
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is dual to £. For any vector field X on M the tangent part of JX is denoted
by ¢X = JX — n(X)N. Moreover, the following identities hold:

(2) ¢2:—1d+7l®57 77°¢:O7 ¢05207 77(5):1,
(4) 9(X; &) = n(X),

where X,Y € X(M). By (2)-(4), we know that (¢,7n,&, g) is an almost contact
metric structure on M.

Denote by V, A the induced Riemannian connection and the shape operator
on M, respectively. Then the Gauss and Weingarten formulas are given by

(5) VxY =VxY + g(AX,Y)N, VxN =—AX,
where V is the connection on M™ with respect to g. Also, we have
(6) (Vxo)Y =n(Y)AX — g(AX,Y)E, Vx¢=9AX.
In particular, M is said to be a Hopf hypersurface if the structure vector field
¢ is an eigenvector of A. -

From now on we always assume that the sectional curvature of M™ is con-
stant c. When ¢ = 0, M™ is complex Euclidean space C". When ¢ # 0, M"

is a non-flat complex space form, denoted by M™(c), then from (5), we know
that the curvature tensor R of M is given by
c

(1) RX,Y)Z=7 (g(Y, 2)X —g(X, 2)Y + g(¢Y, Z)¢X — g(6X, Z)pY

+29(X, 6Y)02)) + g(AY, Z)AX — g(AX, Z)AY,

and the shape operator A satisfies
c

(8)  (VxAY = (VyA)X = Z(n(X)sY = n(Y)oX —29(6X,Y)¢)

for any vector fields X,Y, Z on M. From (7), we get the Ricci tensor @ of type
(1,1):
(9) QX = 2{(271 +1)X — 3n(X)E} + hAX — A®X,
where h denotes the mean curvature of M (i.e., h = trace(A4)). We denote by
S the scalar curvature of M, i.e., S = trace(Q).

If M is a Hopf hypersurface of M"(c), A = a&, where o = g(AE, £). Due to

[14, Theorem 2.1], « is constant. Remark that when ¢ = 0, « is also constant
(see the proof of [5, Lemma 1]). Using the equation (8), we obtain

(10) (VeA)X = adAX — ApAX + %bX
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for any vector field X. Since V¢A is self-adjoint, by taking the anti-symmetry
part of (10), we get the relation:

(11) 2APAX — gqu = a(¢pA+ AP)X.

As the tangent bundle TM can be decomposed as TM = RE @ D, where
D ={XeTM: X1}, the condition A = o€ implies AD C D, thus we can
pick up X € ® such that AX = fX for some function f on M. Then from
(11) we obtain

(12) 2f — a)AdX = (fa + g)wf.

If 2f = «, then ¢ = —4f2, which shows that M is locally congruent to a
horosphere in CH"(see [2]).

Next we recall an important lemma for a Riemannian manifold satisfying
Miao-Tam equation (1).

Lemma 2.1 ([7]). Let a Riemannian manifold (M™,g) satisfies the Miao-Tam
equation. Then the curvature tensor R can be expressed as

R(X,Y)VA=X(NQY -Y(NQX+M(VxQ)Y —(VyQ)X}+X(B)Y -Y(8)X
for any vector fields X, Y on M and 8 = —%.

n

Applying this lemma we obtain:

Lemma 2.2. For a Hopf real hypersurface M?*™~' with Miao-Tam critical
metric of a complex space form, the following equation holds:

(13)
Xa[X () = €n(X)] = u(ENNX) = X)) +aENn(X) — aAX (),

where p= §(2n — 1) + ah —a® — 375,

Proof. Replacing Z in (7) by V), we have
(14) R(X,Y)VA= g(Y()\)X —XANY 4+ oY (V)X — 90X (N\)pY

+29(X, ¢>Y)¢V>\)> + AY(A)AX — AX(N)AY.
By combining with Lemma 2.1, we get

(15)  X(NQY -Y(NQX + M(VxQ)Y — (VyQ)X}

— (¢~ QHS_ S) (YOUX = X)Y ) + £ (6 (N6X - 6X (NeY

+29(X, ¢Y)¢>V>\) +AY(W)AX — AX(N)AY.

Now making use of (9), for any vector fields X, Y we first compute

(Vy@)X = 2{—3(VW7)(X)§ —3n(X)Vy &} + Y (h)AX + h(Vy A)X
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— (VyA)AX — A(Vy A)X
3
= — H9(6AY, X)E +n(X)6AY} + Y (W) AX + h(Vy A)X

— (VyA)AX — A(VyA)X.

By (8), we thus obtain

(16)

(VxQ)Y — (Vy@Q)X
3c
= — T 9@AX + APX, Y)E+n(Y)PAX — n(X)PAY'}

FX(AY Y (R)AX + " (n(X)0¥ —n(V)0X — 29(oX, V)¢)

— (VxAJAY + (Vy A)AX — £ (n(X)A6Y = (V) ApX - 29(6X,Y)AS).

Therefore, taking the product of (15) with £ and using (16), we conclude
that
3
(17) = T96AX + A6X,Y) +aX (R)n(Y) - a¥ (R)n(X)

(VX A)AY + (Vy A)AX, ) — Do ac

9(¢X,Y)

= L (Y n(x) = X(n()) + TAY )n(X) = TAX (N1,

where p = £(2n — 1) + ah — o? — ;-2 Moreover, using (11) we compute

2n—2"

9g((VxA)AY — (Vy A)AX,E)

= 9(5(0AX — ADX) — T0X, AY) — (5 (9AY — ApY) — 70V, AX).

Substituting this into (17) we arrive at

2 2
(18) ¢ +4 O (SAX + ADX) + aX (h)E — an(X)Vh
n %(A%X +pA2X) — LC; ox
_ K _ ot _“
-4 (VA= X(€) + “n(X)AVA = SAX(VE.
Finally, taking an inner product of (18) with & gives (13). O

3. Hopf real hypersurfaces of complex space forms

First of all, we assume ¢ # 0, ie., M?n=1 is a Hopf real hypersurface of
non-flat complex space form M™(c). We first consider o = 0, i.e., A = 0, then
the relation (13) yields

(19) (— QHS_ 5+ Z(2n - 1)) (g(A)g - V)\) ~0.
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If —25 +¢(2n—1) =0, ie, S = 2c(n —1)(2n — 1). Then from (18) we
find
(20) §(¢AX + ApX) =0,

which yields pAX 4+ ApX = 0 for all vector field X. This is contradictory with
(14, Corollary 2.12]. Thus S # §(n —1)(2n — 1), and it follows from (19) that
VA = &(N)E. Differentiating this along X gives

(21) Vx VA= X(EM)E+E(NoAX.
On the other hand, from (1) we can obtain
(22) VxVA=(1+ANX +IQX.

Comparing (21) and (22), we have
(23) X(EN)E+ENPAX = (1+ANX +AQX.
Moreover, by (9), putting X = & gives

Ac
(24) EEN)=1+AN+ ?(n—l).
Choose a local orthonormal frame {e; } such that es,—1 =  and e,_14; = Pe;
fori=1,...,n—1. Using the frame to contract over X in (23), we also derive
that

§(EN) = (1+AN(2n — 1) + AS.
Comparing with (24), we find

A
(25) (2n72)(1+A)\)+)\S:?C(n71).
Furthermore, by taking the trace of Miao-Tam equation (1), we get
(26) (2 — 2n)AX — AS = 2n — 1,
which, together with (25), yields
A
(27) ?C(n—l)—l—lzo.

This shows that A is constant. Thus M is Einstein, but as is well-known that
there are no Einstein hypersurfaces in a non-flat complex space form as in
introduction, hence we immediately obtain:

Proposition 3.1. A real hypersurface with A = 0 of a non-flat complex space
form does not admit Miao-Tam critical metric.

Next we consider the case where o # 0. If for every X € © such that
AX = §X, as before we know that M is locally congruent a horosphere in
CH™ and ¢ = —a?. Moreover, the mean curvature h = na is constant. Then
from (18) we can obtain nc = 7%2. This implies 2n = 1. It is impossible.
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Now choose X € © such that AX = fX with f # §, so from (18) we have

2 - ~
— CEEC(F0X + FoX) +aX (h)e + 5 (P9 + f29X)

= - EX()E - TAX(NE.

Here we have used A¢pX = ]?¢X with f = J;;fira% followed from (12). Since
¢X € D, we further derive
(28) —(c4202)(f + f) + 2a(f? + f?) — (2hc — ac) = 0.

Moreover, inserting f: éo;fa% into the equation (28), we have

2he — ac
4

X

(29) Saft —4(c+ 4a?)f3 + (6ac + 8a® — 8he) f2
+ (8hca — 4aPc — ) f + ac? + 2a3¢ — 2hea’® = 0.

Now we denote the roots of the polynomial by f1, fa, f3, f4, then from the
relation between the roots and coefficients we obtain

f1+f2+f3+f4zc+ﬁf2, \
(30) f1f2+f1f3+f1f4+f2f3+f2f4+f3§f4 i%‘gf‘“‘c,
fifafs + fifafa + fofsfa = —Bheasdaemc

2 2., N
fifafsfy = cH2ecg=2hea,

As the proof of [5, Lemma 4.2], we can also get the following.

Lemma 3.2. The mean curvature h is constant.
Hence from (13) we conclude
AV = g¢2w + ag(N)E.
By taking the inner product with the principal vector X € ©, we obtain
(f+5)1x ) =o.

If X(\) =0 for all X € D, then VA = £(A\)€. As the proof of Proposition 3.1,
we see that M is Einstein, which is impossible.

If X(A) #0forall X € ®, then f+ £ =0, i.e., M has only two distinct
constant principal curvatures o, —£. Further, we see from (12) that

(31) 2f2—2af—§:0.

Since the hypersurface M has two distinct constant principle curvatures: «
of multiplicity 1 and f of multiplicity 2n — 2, it is easy to get that the mean
curvature h = o + (2n — 2) f and the scalar curvature S = ¢(n? — 1) + 2a(2n —
2)f + (2n — 2)(2n — 3) f2. Thus

3¢

uz—z+(2n—4)af—(2n—3)f2.
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Inserting this into the relation f 4+ £ = 0, we obtain

(32) (2n =3)(af = f*) = —

Combining (31) with (32), we find nc = 0, which is a contradiction.

If X(\) # 0 for some principle vector X € D, and Without loss general, we
suppose e1(A) # 0, then Ae; = —£e; and Age; = 2#+a2 > der.

Notice that if the hypersurface M of CH™ has constant principal curvatures,
the classification is as follows:

Theorem 3.3 ([2]). Let M be a Hopf real hypersurface in CH™(n > 2) with
constant principal curvatures. Then M is locally congruent to the following:
(1) A : Tubes around a totally geodesic CH"™* C CH™.
(2) B : Tubes of radius r around a totally geodesic real hyperbolic space
RH™ Cc CH™.
(3) N : Horospheres in CH™.

Since the horospheres have two distinct principal curvatures, it is impossible.
By Theorems 3.9 and 3.12 in [14], the Type A, B hypersurfaces have three dis-
tinct principal curvatures: Ay = 1 tanh(u), A = % coth(u) and o = 2 tanh(2u).
Then h=a+(n—1)(A1+X2) =a+ (” L) coth(2u) On the other hand from
Corollary 2.3(ii) in [14], we also have %2 = Mtdeg 4 g ¢ = —=5. This
implies from the last relation in (30) that

1 02—|—2a20—2hca_4n—2

rd 8 o
Thus n = i, that is impossible.

For the case of CP™, the classification is as follow:

Theorem 3.4 ([9,17]). Let M be a Hopf hypersurface in CP™(n > 2) with
constant principal curvatures. Then M is an open part of

(1) A3 : a tuber over a totally geodesic complex projective space CP* of
radius 7 for 0 <k <n-—1, wherer—%, or

(2) B:a tuber over a complex quadric QQ,—1 and RP™, or

(3) C: a tube around the Segre embedding of CP' x CP* into CP?**+1 for
some k <2, or

(4) D : a tube around the Pliicker embedding into CP° of the complexr
Grassmann manifold Go(C®) of complex 2-planes in C®, or

(5) E : a tube around the half spin embedding into CP® of the Hermitian
symmetric space SO(10) = U(5).

The Type As and B hypersurfaces have three distinct principal curvatures:

M = —1cot(u), A2 = Ltan(u),a = 2tan(2u) (see [14, Theorems 3.14 and
3.15]). From the first relation of (30), we have
40?16
MAdo= Y 2 ey aa?,

r2
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It gives a contradiction since ¢ > 0.
For the Type C, D and E hypersurfaces, they have five distinct principal
curvatures (see [14, Theorems 3.16, 3.17, and 3.18]). We compute

1 2
f( — cot(u) + tan(u) + cot(% —u) + cot(%r - u)) = Z(1 + cot?(2u)).
r T
Thus the first relation of (30) implies
24 8
3 cot?(2u) = ¢+ o

It is impossible since ¢ > 0. So the hypersurfaces of Type C, D, E do not admit
Miao-Tam critical metrics.
Summarizing the above discussion, we thus assert the following:

Proposition 3.5. A real hypersurface with AE = af,a # 0 in a non-flat
complex space form does not admit Miao-Tam critical metric.

Together Proposition 3.1 with Proposition 3.5, we prove:

Theorem 3.6. There exist no Hopf real hypersurfaces with Miao-Tam critical
metric in non-flat complex space forms.

In the following we always assume ¢ = 0. That is to say that M is a real
hypersurface of complex Euclidean space C". First of all, if A¢ = 0, we obtain
from (19)

S(¢ng-va) =0,
If S # 0, we have VA = £{(M\)E. As before we can also lead to (27), but it
yields a contradiction since ¢ = 0. Thus the scalar curvature S = 0, and
the relation (26) implies AN = —22=1. Actually, A = —22=1|z|? on R?"~1,
Since R(£, X,£,X) = 0 for all X, the sectional curvature of M is also zero.
By Hartman and Nirenberg’s theorem in [8], M is a hyperplane or a cylinder,
hence we have the following;:

Theorem 3.7. Let M?"~1 be a complete real hypersurface with AE = 0 of
complex Fuclidean space C™. If M admits Miao-Tam critical metric, it is a
generalized cylinder R?"—17P x SP or R?7~1,

When a # 0. Let us choose X € ® such that AX = X for a smooth
function 3, then we know 3 # &, otherwise, if 3 = &, then —4$? = ¢ =0 from
(12), i.e.,, f = 0. This is a contradiction with « # 0. Further, from (12) we
have

(33) Apx = -2

2B_Q¢X.

Therefore we find that the equation (29) holds, and for ¢ = 0 and f = g it
becomes

(52— aB)® =0
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So 8% = af, that means that 3 is constant and further h is also constant. If
a = 3, from (33) we see that the shape operator can be expressed as A = al,
where I denotes the identity map. In this case, M is locally congruent to a
sphere.

If =0, A=an®§&, as the proof of [11, Theorem 1.1], we know that M is
St x R27"~2, Therefore we assert the following:

Theorem 3.8. Let M2~ be a complete real hypersurface with A = of,
a # 0, of complex Euclidean space C™. If M admits Miao-Tam critical metric,
it is locally congruent to a sphere, or S' x R2"—2,

4. Ruled hypersurfaces of non-flat complex space forms

In this section we study a class of non-Hopf hypersurfaces with Miao-Tam
critical metric of non-flat complex space forms. Let v : I — M "(c) be any
regular curve. For t € I, let M (7;)(0) be a totally geodesic complex hypersurface
through the point ~y(t) which is orthogonal to the holomorphic plane spanned
by 7/(t) and Jv/(t). Write M = {M(’;) (c) : t € I'}. Such a construction asserts

that M is a real hypersurface of M "(c), which is called a ruled hypersurface.
It is well-known that the shape operator A of M is written as:

A = o+ BW(B #0),
AW = B¢,
AZ =0 for any Z1&, W,

where W is a unit vector field orthogonal to &, and «,( are differentiable
functions on M. From (9), we have

(34) Q¢ = (3(n— e = B,
(3) QW = (320 + e = B,
(36) QRZ = (3(271 + 1)¢)Z for any Z L&, W.

From these equations we know the scalar curvature S = (n? — 1)c —232. Since
S is constant, this shows that § is also constant. Further, the following relation
VB = (B%+c/4)pW is valid (see [10]), which yields
(37) B*+c/4=0 and S=—(4n*—2)3°
Further, the following lemma holds:
Lemma 4.1 ([10]). For all Z € {X € TM : n(X) = g(X, W) = g(X, ¢W) =
0}, we have the following relations:

VoW = =28W, VW = (8 + %)W,

VzoW = —=pZ, VW = B¢Z,
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Vow oW = 0.
Now putting Y = € and X = W in (15) yields
(38) WO (5 De— 52— €N 20+ e B)W
+M(VwQ)§ — (VeQ)W}

— (¢~ an_ 5) (E0W = ()¢ + A€Q) AW — AW () A€,

Because 3 is constant, from (35) and (34), by Lemma 4.1 we compute
(VwQ)§ = (VeQ)W = Vi (QS) = QVwE — Ve (QW) + QVeW
= -W(B*)E+E(B8*)W =0.
Inserting this into (38), we conclude that
W [(i(Zn —1)e— 282 — Qns_Q} =0,
{ €[+ e—282 - 355 =0
From (39), we get £(X\) = W(A) = 0 since (n + 1)c — 28% — 725 # 0, which

2n—2
is followed from (37).
Putting ¥ = ¢ and X = Z in (15), we have

(10)  ZO)(5(n — e~ )€~ EN(;(2n+ DAZ + M(V7Q)E ~ (VeQ)7)

= (5 5 ) (ewz - 200¢),

By Lemma 4.1, we also obtain
(V2Q)6 — (VeQ)Z = —Z(B*)E + (%) Z = 0.
Since £(A\) = 0, the relation (40) becomes

(39)

Z()\)E(%—l)c—ﬁz— S }:o.

2n — 2
Thus Z(A) = 0 since 3(2n — 1)e — B2 — 725 # 0 as before.
By taking X = ¢W and Y = ¢ in (15), a similar computation gives
1 -~ 5 1 )
(1) =ABGn+2e+ ) = (= 525 + (20— De—52)oW (N,

Inserting (37) into (41), we find

AB(2n +3)(n — 1)'

W) = 2n —1

Consequently, we obtain

AB(2n + 3)(n — 1)

(42) VA= S

W,
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On the other hand, as we known VxVA = AQX + (1 + AXN)X by Miao-
Tam equation (1). When X = Z and W respectively, by Lemma 4.1 it follows
respectively from (35), (36) and (42) that

MA@ 1) o, 41524 (14 AN,

2n—1
_QWQ(?T;ZE’)l(” “D o en+ 282+ (14 AN,

It will give A3% = 0, which is a contradiction with A, 3 # 0. Hence the following
theorem is proved.

Theorem 4.2. There exist no ruled hypersurfaces with Miao-Tam critical met-
rics of non-flat complex space forms.

5. Compact hypersurfaces of complex space forms
For the case where M is compact, we immediately obtain the following result:

Theorem 5.1. Let M?*~! be a compact real hypersurface admitting Miao-Tam
critical metric with A > 0 or A < 0 of complex Euclidean space C™, then M is
a sphere. In the compact real hypersurfaces of a non-flat complex space form
M™(c) there does not exist such a critical metric.

Proof. Write Ric = Ric — %%g. It is proved the following relation(see the
proof of [1, Lemma 5]):

div(Ric(V))) = A Ric|?.

Thus integrating it over M gives Ric=0if A > 0 or A < 0, that means that
Ric = m% g. Namely M is Einstein. For the case of complex Euclidean space
C™, it is proved that M is a sphere, a hyperplane, or a hypercylinder over a
complete plane curve (cf. [6]). But the latter two cases are not compact. For
¢ # 0, it is impossible since there are no Einstein hypersurfaces in a non-flat

complex space form. Therefore we complete the proof. O
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