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ITERATIVE REWEIGHTED ALGORITHM

FOR NON-CONVEX POISSONIAN IMAGE
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Abstract. An image restoration problem with Poisson noise arises in
many applications of medical imaging, astronomy, and microscopy. To

overcome ill-posedness, Total Variation (TV) model is commonly used

owing to edge preserving property. Since staircase artifacts are observed
in restored smooth regions, higher-order TV regularization is introduced.

However, sharpness of edges in the image is also attenuated. To com-
promise benefits of TV and higher-order TV, the weighted sum of the

non-convex TV and non-convex higher order TV is used as a regularizer

in the proposed variational model. The proposed model is non-convex
and non-smooth, and so it is very challenging to solve the model. We

propose an iterative reweighted algorithm with the proximal linearized

alternating direction method of multipliers to solve the proposed model
and study convergence properties of the algorithm.

1. Introduction

Images degraded by blurring and further corrupted by Poisson noise appear
in various applications including medical [22], biological [20], and astronomical
[3] imaging, for example; the recovery of those images is an important task
and an active research area [1]. Poisson data occur in imaging processes where
images are obtained by counting particles, such as photons hitting a detector.
We refer to the survey paper [1] for a snap shot view of the literature and the
comprehensive reference therein.

More specifically, we assume that observations follow a Poisson distribution
whose mean is linearly related to the underlying image. Let b ∈ <n+ and u ∈ <n+
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be vectorized versions of the two dimensional observed image and the image to
be estimated of the size M ×N (n = MN), respectively. Now the image b can
be represented as

(1) b ∼ Poisson(Au),

where A ∈ <n×n is a linear operator, the identity operator for pure denoising or
a convolution with a blur kernel for deblurring. It is a typical inverse problem
and thus ill-posed in most cases of interest.

To bypass such difficulties, a maximum a posteriori (MAP) estimate is
widely used, which consists of a fitting term and a regularization term. From
the following likelihood function of the Poisson noise model (1)

p(b|Au) =

n∏
i=1

((Au)i)
bi

bi!
exp(−(Au)i),

where xi denotes the ith component of x, the negative log-likelihood

(2) 〈1, Au〉 − 〈b, log(Au)〉

can be derived [9]. By adopting the Total Variation (TV) as a regularizer, the
following convex minimization model

(3) min
u∈U
〈1, Au〉 − 〈b, log(Au)〉+ λTV (u),

where λ > 0, TV (u) =
∑n
i=1

√
((∇u)i,1)2 + ((∇u)i,2)2, and U = [υ,C]n with

0 < υ ≤ C <∞, is successfully applied for Poisson image restoration problems
[9,21]; the TV regularizer provides relatively well-preserved and sharp edges in
the restoration. Here, υ is a positive constant to ensure taking the logarithm
of u and C is a maximum value of u, for example, 255 if 8 bit unsigned integer
is used, or 1 if rescaled.

However, the TV term often introduces so called staircase artifacts, an in-
trinsic property of TV favoring piecewise constant solutions even in smooth
regions. To remove the drawback of the TV term in smooth regions, higher-
order TV is applied for Gaussian noise, which may promote piecewise smooth
solutions [5, 14]. The major challenge in the model using only higher-order
derivatives is to maintain sharp edges in the reconstruction. To compromise
benefits of both lower- and higher-order TV’s, hybrid regularizers that use both
lower- and higher-order derivatives have been proposed aiming to preserve dis-
continuities between smooth regions and keep smoothness within each region
[12,15].

In contrast to those convex models with Gaussian noise, Krishnan and Fergus
[11] proposed a non-convex TV model based on the statistical observation that
natural image gradients have a heavy-tailed distribution. This distribution is
modeled by a hyper-Laplacian, p(x) ∝ e−k|x|

α

with 0.5 ≤ α ≤ 0.8. Chartrand
[6] also shows that a non-convex regularizer ‖∇u‖α with 0 < α < 1 preserves
shapes better than the convex one.



ITERATIVE REWEIGHTED ALGORITHM FOR POISSONIAN IMAGE 721

Combining the idea of hybrid models and non-convex models, Oh et al. [18]
proposed a variational model with the non-convex hybrid TV regularizer with
Gaussian noise:

(4) min
u

(1− c)‖∇u‖α1 + c‖∇2u‖α2 +
µ

2
‖u− b‖2,

where 0 ≤ c ≤ 1 and 0 < α1, α2 < 1. The superiority of the non-convex type TV
regularizer is a good balance between preserving edges and alleviating staircase
artifacts and is demonstrated by providing experimental results [13,18].

By adopting the model in [18], we propose the non-convex weighted total
variation (NWTV) model for Poisson image restoration problems:

(5) min
u∈U

c1‖∇u‖α1 + c2‖∇2u‖α2 + 〈1, Au〉 − 〈b, log(Au)〉,

where c1, c2 ≥ 0. In words, we use a weighted sum of the non-convex first
order TV and the non-convex second order TV as a regularizer which could
preserve image details such as edges well while reducing staircase artifacts.

Since both terms are non-convex and non-smooth, we solve the proposed
model by adapting an iterative reweighted algorithm (IRA) [4, 8, 17] with
the proximal linearized alternating direction method of multipliers (PLADM)
[7, 10]. We also analyze the convergence properties of IRA for the proposed
model by using the framework of a block nonlinear Gauss-Seidel method. Since
we assume only differentiability and/or strong convexity of the fitting term,
the convergence analysis includes the iterative reweighted algorithm solving
the non-convex hybrid variational models proposed in [13, 18]. We note that
the convergence properties of the methods in [13, 18] have not been studied.
Numerical experiments demonstrate the efficiency and stability of the proposed
NWTV model for Poisson image restoration problems.

In our notation, for any x ∈ <n, xj denotes the jth component of x, and

‖x‖p =
(∑n

j=1 |xj |p
)1/p

for 1 ≤ p < ∞. For simplicity, we write ‖x‖ = ‖x‖2.

The identity matrix is denoted by I and the vector of zero entries is denoted
by 0. 1 is the vector of all ones. Unless otherwise specified, {xk} denotes the
sequence x0, x1, . . . .

2. Iterative reweighted algorithm

In this section, we describe an iterative reweighted algorithm for solving
the proposed non-convex weighted total variation model (5) and establish its
convergence.

The proposed model (5) is non-convex and non-smooth, and so gradient
based algorithms are not suitable for applying to solve the model (5). Hence
we propose an iterative reweighted algorithm (IRA) for solving (5), i.e., we use
the following convex model at each iteration:

(6) uk+1 = arg min
u∈U

f(u) + c1ν1(∇uk)‖∇u‖+ c2ν2(∇2uk)‖∇2u‖,
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where
f(u) = 〈1, Au〉 − 〈b, log(Au)〉

and, with ηk ≥ 0,

ν1(∇uk) =
α1

(‖∇uk‖+ ηk)1−α1
, and ν2(∇2uk) =

α2

(‖∇2uk‖+ ηk)1−α2
.

Here, ∇u is given by (∇u)i,j = ((D+
x u)i,j , (D

+
y u)i,j), where D+

x u and D+
y u

denote the first order forward difference operator with the reflexive boundary
condition:

(D+
x u)i,j =

{
ui,j+1 − ui,j if 1 ≤ j < N

0 if j = N,

(D+
y u)i,j =

{
ui+1,j − ui,j if 1 ≤ i < N

0 if i = N.

Similarly, with the reflexive boundary condition, the first order backward dif-
ference operators D−x u and D−y u are denoted by

(D−x u)i,j =

{
0 if j = 1

ui,j − ui,j−1 if 1 < j ≤ N,

(D−y u)i,j =

{
0 if i = 1

ui,j − ui−1,j if 1 < i ≤ N.
Based on the above operators, we derive the second order difference operator
as follows:

(∇2u)i,j =

(
D−x (D+

x u)i,j D+
x (D+

y u)i,j
D−y (D−x u)i,j D−y (D+

y u)i,j

)
.

They can be considered as approximations of the gradient and the Hessian
matrix using finite differences.

We have two versions of IRA depending on the choice of ηk. In the first
version of IRA, we reduce ηk gradually to zero and we describe it in Algorithm
1. The second version of IRA fixes ηk for all k and is later given in Algorithm
3.

Algorithm 1 IRA

Update uk+1 and ηk+1 from uk and ηk:

1. uk+1 = arg min
u∈U

f(u) + c1ν1(∇uk)‖∇u‖+ c2ν2(∇2uk)‖∇2u‖.

2. ηk+1 = νηk with ν ∈ (0, 1).

In the first step, we apply the proximal linearized alternating direction
method of multipliers to solve the subproblem (6). We describe those methods
in Section 3.

In the second step, the parameter ν < 1. Thus ηk → 0 and so IRA is the
exact algorithm for solving the NWTV model (5). But, in this case, ν1(∇ũ)
and ν2(∇2ũ) in (6) may not be defined when ũ is an accumulation point of
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the sequence {uk} generated by IRA. Hence we need some assumptions for
establishing the convergence of IRA.

Next, we give a proof for the convergence of IRA. We define the following
function

(7)

F (u, t, η) := f(u) + c1α1

(
‖∇u‖+ η

t1−α1
1

+
1− α1

α1
tα1
1

)
+ c2α2

(
‖∇2u‖+ η

t1−α2
2

+
1− α2

α2
tα2
2

)
and consider the following minimization problem

(8) min
u∈U,t∈(0,∞)2,η≥0

F (u, t, η).

If we apply the three-block nonlinear Gauss-Seidel (ThBGS) method to the
problem (8), we alternatively minimize the problem with respect to u, with re-
spect to t, and then with respect to η but inexactly. The algorithmic framework
for ThBGS is given in Algorithm 2.

Algorithm 2 ThBGS

Update uk+1, tk+1, ηk+1 from uk, tk, ηk:

1. uk+1 = arg min
u∈U

F (u, tk, ηk).

2. tk+1 = arg min
t∈(0,∞)2

F (uk+1, t, ηk).

3. ηk+1 = νηk with ν ∈ (0, 1).

By taking the derivative of F with respect to t, we have

∇tF (u, t, η) =

(
c1α1

(
(α1 − 1)(‖∇u‖+ η)tα1−2

1 + (1− α1)tα1−1
1

)
c2α2

(
(α2 − 1)(‖∇2u‖+ η)tα2−2

2 + (1− α2)tα2−1
2

) ) .
With u = uk+1 and η = ηk, the solution of ∇tF (u, t, η) = 0 is

(9) tk+1
1 = ‖∇uk+1‖+ ηk and tk+1

2 = ‖∇2uk+1‖+ ηk.

Thus, t has a closed form solution (9) at the second step. By ignoring the
constant terms, the minimization problem in the first step can be expressed as
follows:

min
u∈U

f(u) + c1ν1(∇uk)‖∇u‖+ c2ν2(∇2uk)‖∇2u‖,

in which the objective function is the same one in the problem (6). Hence uk+1

in ThBGS is exactly same as uk+1 in IRA. Therefore the iterative reweighted
algorithm for solving the proposed model (5) is equivalent to the three-block
Gauss-Seidel method for solving the problem (8).

The next theorem shows that every accumulation point of the sequence
generated by IRA is a stationary point of the problem (5).
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In what follows, û is a stationary point of f(u)+c1‖∇u‖α1 +c2‖∇2u‖α2 +ιU ,
if

0 ∈ ∇f(û) + c1α1‖∇û‖α1−1∂(‖∇û‖) + c2α2‖∇2û‖α2−1∂(‖∇2û‖) +NU (û),

under conditions that ∇û 6= 0 and ∇2û 6= 0. Here, ιU denotes the indicator
function of U , i.e., ιU (u) = 0 if u ∈ U and ιU (u) =∞ if u 6∈ U . ∂ is the set of
subgradients and NU is the normal cone of U [19].

Theorem 2.1. Let {uk} be the sequence generated by IRA. Suppose that u∗ is
an accumulation point of the sequence and assume that ∇u∗ 6= 0 and ∇2u∗ 6= 0.
Then u∗ is a stationary point of the problem (5).

Proof. Let F (u, t, η) be defined in (7). By the first step in Algorithm 2, we can
observe that

(10) F (uk+1, tk, ηk) ≤ F (uk, tk, ηk).

Also, by the second step in Algorithm 2, we can observe that

(11) F (uk+1, tk+1, ηk) ≤ F (uk+1, tk, ηk).

Since tk+1
1 = ‖∇uk+1‖+ ηk and tk+1

2 = ‖∇2uk+1‖+ ηk, we have

F (uk+1, tk+1, ηk) = f(uk+1) + c1α1

(
‖∇uk+1‖+ ηk

(tk+1
1 )1−α1

+
1− α1

α1
(tk+1

1 )α1

)
+ c2α2

(
‖∇2uk+1‖+ ηk

(tk+1
2 )1−α2

+
1− α2

α2
(tk+1

2 )α2

)
= f(uk+1) + c1(‖∇uk+1‖+ ηk)α1 + c2(‖∇2uk+1‖+ ηk)α2 .(12)

If ηk+1 = νηk with ν < 1, then we obtain

(‖∇uk+1‖+ ηk+1)α1 ≤ (‖∇uk+1‖+ ηk)α1 ,

(‖∇2uk+1‖+ ηk+1)α2 ≤ (‖∇2uk+1‖+ ηk)α2 .

These inequalities together with (12) imply

(13) F (uk+1, tk+1, ηk+1) ≤ F (uk+1, tk+1, ηk).

The inequalities (10), (11), and (13) yield that the sequence {F (uk, tk, ηk)}
is non-increasing. Since u∗ is an accumulation point of {uk}, there exists a
subsequence K such that {uk}K → u∗. And we let t∗1 = ‖∇u∗‖ and t∗2 =
‖∇2u∗‖.

By the definition of tk and (12), we can verify that F (uk, tk, ηk) = f(uk) +
c1(‖∇uk‖ + ηk)α1 + c2(‖∇2uk‖ + ηk)α2 . From the continuity of f , ‖ · ‖α1 ,
and ‖ · ‖α2 , with {uk}K → u∗ and ηk → 0, we have {F (uk, tk, ηk)}K →
f(u∗) + c1‖∇u∗‖α1 + c2‖∇2u∗‖α2 . This together with the monotonicity of
{F (uk, tk, ηk)} implies that F (uk, tk, ηk)→ f(u∗) + c1‖∇u∗‖α1 + c2‖∇2u∗‖α2 .
Using this relation and (10), we further have

(14) F (uk+1, tk, ηk)→ f(u∗) + c1‖∇u∗‖α1 + c2‖∇2u∗‖α2 .
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In addition, by the definition of uk+1, we know that F (u, tk, ηk) ≥ F (uk+1, tk,
ηk) for all u ∈ U . Taking limits on both sides of this inequality with K and
(14) imply that

F (u, t∗, 0) ≥ f(u∗) + c1‖∇u∗‖α1 + c2‖∇2u∗‖α2 ∀ u ∈ U.
Since t∗1 = ‖∇u∗‖ and t∗2 = ‖∇2u∗‖,

F (u∗, t∗, 0) = f(u∗) + c1‖∇u∗‖α1 + c2‖∇2u∗‖α2 ,

and thus u∗ ∈ arg minu∈U F (u, t∗, 0).
Hence u∗ is a stationary point of minu∈U F (u, t∗, 0), that is,

0 ∈ ∇f(u∗) + c1α1(t∗1)α1−1∂‖∇u∗‖+ c2α2(t∗2)α2−1∂‖∇2u∗‖+NU (u∗).

The identities t∗1 = ‖∇u∗‖ and t∗2 = ‖∇2u∗‖ imply that

0 ∈ ∇f(u∗)+c1α1‖∇u∗‖α1−1∂(‖∇u∗‖)+c2α2‖∇2u∗‖α2−1∂(‖∇2u∗‖)+NU (u∗).

Therefore, u∗ is a stationary point of the problem (5). �

Remark 2.2. In general, ∇u∗ 6= 0 and ∇2u∗ 6= 0 in natural scene images,
and so, neither constant nor affine image may be considered. This shows the
soundness of the assumption.

If A = I, the denoising case, a stronger result holds; the next theorem
guarantees the convergence of the entire sequence.

Theorem 2.3. Let {uk} be the sequence generated by IRA with A = I. If {uk}
converges to u∗ with ∇u∗ 6= 0 and ∇2u∗ 6= 0, then u∗ is a stationary point of
the problem (5).

Proof. f(u) is twice differentiable on the set U and ∇2
uf(u) = Diag(b◦u−2) for

all u ∈ U . Since ∇2
uf(u) � ζI with ζ :=

minj bj
C2 for all u ∈ U , the function f is

strongly convex [16], i.e.,

(15) f(u) ≥ f(v) + 〈∇f(v), u− v〉+
ζ

2
‖u− v‖2.

By Fermat’s rule [19, Theorem 10.1],

uk+1 ∈ arg min
u

〈∇f(uk+1), u〉+ P (u),

where P (u) := c1α1

(
‖∇u‖

(tk)
1−α1
1

)
+ c2α2

(
‖∇2u‖

(tk)
1−α2
2

)
. This implies that

(16) 〈∇f(uk+1), uk+1〉+ P (uk+1) ≤ 〈∇f(uk+1), uk〉+ P (uk).

From the strong convexity of f (15), we have

F (uk+1, tk, ηk)− F (uk, tk, ηk) = f(uk+1)− f(uk) + P (uk+1)− P (uk)

≤ 〈∇f(uk+1), uk+1 − uk〉 − ζ

2
‖uk+1 − uk‖2

+ P (uk+1)− P (uk)
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≤ − ζ

2
‖uk+1 − uk‖2,(17)

where the second inequality uses (16).
The above inequality (17) together with the inequalities (10), (11), (13), the

boundedness of {ηk}, and the compactness of the set U implies that

ζ

2
‖uk+1 − uk‖2 ≤ F (uk, tk, ηk)− F (uk+1, tk, ηk)→ 0.

Since U is compact, there exists a ũ such that uk → ũ. By similar arguments
as the proof of Theorem 2.1 with u∗ = ũ, we conclude that ũ is a stationary
point of the problem (18) with A = I. �

In the second step of IRA, if the parameter ν = 1, i.e., ηk is fixed for all k,
it becomes the inexact algorithm for solving the NWTV model (5). In other
words, it solves the following approximated problem

(18) min
u∈U

f(u) + c1(‖∇u‖+ η̄)α1 + c2(‖∇2u‖+ η̄)α2 ,

where η̄ = η0 > 0. The algorithm for solving the above problem (18) is given
in Algorithm 3.

Algorithm 3 IRA-approx

Update uk+1 from uk with ηk = η̄ for all k:

1. uk+1 = arg min
u∈U

f(u) + c1ν1(∇uk)‖∇u‖+ c2ν2(∇2uk)‖∇2u‖.

The following theorem establishes the convergence for IRA-approx. In this
case, the assumptions ∇u∗ 6= 0 and ∇2u∗ 6= 0 are not necessary due to the
fixed ηk = η̄.

Theorem 2.4. Let {uk} be the sequence generated by IRA-approx. Suppose
that u∗ is an accumulation point of the sequence. Then u∗ is a stationary point
of the problem (18).

Proof. By proceeding as the proof of Theorem 2.1 with ηk = η̄ for all k, we
have that

(19) F (uk+1, tk+1, η̄) ≤ F (uk+1, tk, η̄) ≤ F (uk, tk, η̄) ∀k,

i.e., {F (uk, tk, η̄)} is non-increasing.
From the definition of tk, we have

F (uk, tk, η̄) = f(uk) + c1(‖∇uk‖+ η̄)α1 + c2(‖∇2uk‖+ η̄)α2 .

One can show that there exists a subsequence K such that {uk}K → u∗ and
{F (uk, tk, η̄)}K → f(u∗) + c1(‖∇u∗‖+ η̄)α1 + c2(‖∇2u∗‖+ η̄)α2 , similar to the
proof of Theorem 2.1.
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Since the sequence {F (uk, tk, η̄)} is non-increasing, F (uk, tk, η̄) → f(u∗) +
c1(‖∇u∗‖+ η̄)α1 + c2(‖∇2u∗‖+ η̄)α2 . By using (19), we obtain

(20) F (uk+1, tk, η̄)→ f(u∗) + c1(‖∇u∗‖+ η̄)α1 + c2(‖∇2u∗‖+ η̄)α2 .

By further proceeding as the proof of Theorem 2.1 with ηk = η̄ for all k, u∗

is a stationary point of the problem (18). �

Similar to Theorem 2.3, the convergence of the entire sequence is also guar-
anteed for denoising.

Theorem 2.5. Let {uk} be the sequence generated by IRA-approx with A = I.
Then the sequence {uk} converges to a stationary point of the problem (5).

Proof. By proceeding as the proof of Theorems 2.3 with ηk = η̄ and 2.4, we
conclude that the sequence {uk} converges to a stationary point of the problem
(18) with A = I. �

Remark 2.6. The analysis of Theorems 2.1 and 2.4 can still hold when the
function f is replaced by any differentiable function such as µ

2 ‖Au− b‖
2. Also,

the analysis of Theorems 2.3 and 2.5 are valid when the function f is replaced
by any differentiable strongly convex function, for example, µ

2 ‖u− b‖
2. Thus,

those theorems also guarantee the convergence of the algorithms in [13, 18],
which have not been studied yet.

3. Proximal linearized alternating direction method of multipliers

In this section, we briefly describe the proximal linearized alternating di-
rection method of multipliers (PLADM) to solve the subproblem (6). The
convergence properties of this method can be found in [7, 10].

Because of the nonlinearlity and non-smoothness properties of ‖∇u‖ and
‖∇2u‖, we introduce new variables v = ∇u, w = ∇2u, and z = Au and then
consider the following reformulation of the subproblem (6):

min
u∈U,v,w,z

c1ν1(∇uk)‖v‖+ c2ν2(∇2uk)‖w‖+ 〈1, z〉 − 〈b, log(z)〉(21)

subject to v = ∇u, w = ∇2u, z = Au.

To apply PLADM to solve the problem (21), we introduce the augmented
Lagrangian function L and the linearized augmented Lagrangian function Lu
with respect to the variable u:

L(v, w, u, z, λ, τ, ξ;uk) = c1ν1(∇uk)‖v‖ − 〈λ, v −∇u〉+
β

2
‖v −∇u‖2

+ c2ν2(∇2uk)‖w‖ − 〈τ, w −∇2u〉+
γ

2
‖w −∇2u‖2

+ 〈1, z〉 − 〈b, log(z)〉 − 〈ξ, z −Au〉+
ρ

2
‖z −Au‖2,
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where β, γ, and ρ are positive penalty parameters controlling the proximity of
v, w, and z to ∇u, ∇2u and Au, respectively, and

Lu(v, w, u, z, λ, τ, ξ;u`, uk)

= c1ν1(∇uk)‖v‖ − 〈λ, v〉+ c2ν2(∇2uk)‖w‖ − 〈τ, w〉+ 〈1, z〉

− 〈b, log(z)〉 − 〈ξ, z〉+ 〈Ψ` +AT (ξ + ρ(Au` − z), u− u`〉+
δ

2
‖u− u`‖2,

where Ψ` = ∇T (λ+ β(∇u` − v)) + (∇2)T (τ + γ(∇2u` −w)) and δ is a penalty
parameter for a simple quadratic approximation Lu of L with respect to u at
u`.

We have the following framework of PLADM to solve the reformulation (21):

(22)



v`+1 ← arg min
v

L(v, w`, u`, z`, λ`, τ `, ξ`;uk)

w`+1 ← arg min
w

L(v`+1, w, u`, z`, λ`, τ `, ξ`;uk)

z`+1 ← arg min
z

L(v`+1, w`+1, u`, z, λ`, τ `, ξ`;uk)

u`+1 ← arg min
u∈U

Lu(v`+1, w`+1, u, z`+1, λ`, τ `, ξ`;u`, uk)

λ`+1 ← λ` − β(v`+1 −∇u`+1)

τ `+1 ← τ ` − γ(w`+1 −∇2u`+1)

ξ`+1 ← ξ` − ρ(z`+1 −Au`+1).

The first four steps have the closed form solutions. In what follows, PU (u)
denotes the projection of u onto the set U and the shrinkage operator in the
first two steps is adopted from [23]:

v`+1
i = shrink

(
∇u`i +

λ`i
β
,
c1ν1(∇uk)

β

)

= max

{∥∥∥∥∇u`i +
λ`i
β

∥∥∥∥− c1ν1(∇uk)

β
, 0

} ∇u`i +
λ`i
β∥∥∥∇u`i +
λ`i
β

∥∥∥ (i = 1, . . . , n),

w`+1
i = shrink

(
∇2u`i +

τ `i
γ
,
c2ν2(∇2uk)

γ

)

= max

{∥∥∥∥∇2u`i +
τ `i
γ

∥∥∥∥− c2ν2(∇2uk)

γ
, 0

} ∇2u`i +
τ`i
γ∥∥∥∇2u`i +
τ`i
γ

∥∥∥ (i = 1, . . . , n),

z`+1 =
q` +

√
(q`)2 + 4ρb

2ρ
,

u`+1 = PU
(
u` − r`

δ

)
,

where q` = ρAu`+ξ`−1 and r` = ∇T (λ`+β(∇u`−v`+1))+(∇2)T (τ `+γ(∇2u`−
w`+1))+AT (ξ`+ρ(Au`−z`+1)). We note that the alternating direction method
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(a) boat (b) cameraman (c) goldhill (d) lena (e) peppers

Figure 1. Dataset for numerical experiments: Five standard
test images of the size 512× 512.

of multipliers (ADMM) [2, 24] can also be applied to solve the reformulation
(21) and its framework is different from PLADM at the fourth step in which it
requires an inversion. PLADM has an advantage over ADMM when the cost
for an inversion is expensive.

4. Numerical experiments

In this section, we report numerical results on image restoration problems
with Poisson noise, including denoising and deblurring. We assume that the
dynamic range of all image data is [0, 1], by normalization if necessary.

We compare the proposed NWTV model (5) with IRA to the total variation
regularized variational (TVRV) model (3) with PIDSplit+ [21] and the convex
case of the model (5) with α1 = α2 = 1 (L1L1). L1L1 is solved by ADMM.

Five well-known standard test images (boat, cameraman, goldhill, lena, and
peppers) of size 512× 512 in Figure 1 are used for our numerical experiments
and all algorithms are implemented in Matlab. We stop all the algorithms by
the following stopping condition:

(23) ||uk+1 − uk|| ≤ Ct||uk||,
where Ct > 0 is the stopping tolerance and set to Ct = 5 × 10−3 for the
proposed methods. Similarly, the inner solver PLADM (22) is stopped by
the condition (23) with Ct = 10−3. The following peak signal-to-noise ratio
(PSNR) between the original and reconstructed image is calculated and used
for quality comparison:

PSNR = 10 log10

(
2552n

‖ū− u∗‖2

)
,

where n is the size of the image, ū is the original image, and u∗ is the recovered
image.

4.1. Image denoising

To test the performances of the proposed NWTV model (5) for Poisson noise
removal, the model parameters α1, α2, c1, and c2 are chosen by the best average
PSNR on the chosen 5 test images and additional 4 standard test images. The
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parameters α1 and α2 are simply selected among four pairs (0.7, 0.7), (0.7, 0.9),
(0.9, 0.7), and (0.9, 0.9), based on the paper [18]. The algorithm parameters
β, γ, ρ, and δ are heuristically chosen as 0.4, 0.2, 1.0, and 0.8, respectively
and fixed for all experiments. The parameter value λ of TVRV model and all
parameters of L1L1 are tuned to provide the high performance on the images.
Parameter are as follows: For TVRV, λ = 0.10. For L1L1, c1 = 0.05, c2 = 0.05.
For NWTV, α1 = 0.7, α2 = 0.7, c1 = 0.10, c2 = 0.20.

Table 1 reports the CPU time (in seconds) and the PSNR values for TVRV,
L1L1, and NWTV. Comparing to TVRV, the proposed NWTV model shows
0.49dB and 1.07dB improvements in terms of average PSNR values. Comparing
to L1L1, the NWTV model shows better performance but improvements are
less than the case of TVRV. The recovered images are given in Figure 2.

Table 1. Comparison for denoising

Denoising Noisy TVRV L1L1 NWTV
image PSNR time PSNR time PSNR time PSNR

boat 22.74 0.53 29.89 0.46 30.08 1.85 30.55
cameraman 23.34 0.53 32.96 0.45 32.99 1.85 33.36

goldhill 23.67 0.53 29.83 0.46 30.02 1.85 30.47
lena 23.11 0.52 32.19 0.46 32.08 1.84 32.68

peppers 23.05 0.52 31.15 0.45 31.50 1.87 32.22

4.2. Image deblurring

To perform restoring images degraded by blurring and Poisson noise, we
consider two cases; 7× 7 Gaussian blur with standard deviation 1.5 and 7× 7
uniform blur. We again compare the performance of NWTV to TVRV and
L1L1. The parameters are chosen under the same criteria as for the denoising
case. The parameters β, γ, ρ, and δ are set to 0.5, 0.05, 2.0, and 0.9, except
PLADM for Gaussian blur. In that case, γ is 0.2. The parameters for Gaussian
blur are as follows: For TVRV, λ = 0.17. For L1L1, c1 = 0.08, c2 = 0.08. For
NWTV, α1 = 0.7, α2 = 0.7, c1 = 0.10, c2 = 0.20. The parameters for uniform
blur are λ = 0.20 for TVRV, c1 = 0.10, c2 = 0.10 for L1L1, and, α1 = 0.7,
α2 = 0.7, c1 = 0.20, c2 = 0.40 for NWTV.

Similar to Table 1, Tables 2 and 3 report the results of deblurring under
Gaussian blur and uniform blur, respectively. Comparing to TVRV and L1L1,
the proposed NWTV model shows similar improvements to denoising cases, in
terms of average PSNR values. For example, the PSNR value of NWTV for
the “goldhill” image is 0.36dB higher than that of TVRV under the uniform
blur. The restored images of uniform blur case are given in Figure 3.
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(a) Noisy image (b) TVRV

(c) L1L1 (d) NWTV

Figure 2. Denoising on the subimage of “boat”

Table 2. Comparison for deblurring under Gaussian blur

Denoising Noisy TVRV L1L1 NWTV-PLADM
image PSNR time PSNR time PSNR time PSNR

boat 17.06 0.67 24.42 0.55 24.56 3.70 24.60
cameraman 17.69 0.90 25.84 0.63 25.97 3.74 25.93

goldhill 18.01 0.63 25.27 0.63 25.30 3.72 25.54
lena 17.67 0.68 26.65 0.63 26.66 3.83 26.76

peppers 17.63 0.68 26.47 0.54 26.55 3.80 26.71

5. Conclusion

In this paper, we propose a non-convex weighted total variation model
for image restoration problems with Poisson noise and propose an iterative
reweighted algorithm with the alternating direction method of multipliers or
the linearized alternating direction method of multipliers. We also analyze the
convergence properties of the iterative reweighted algorithm for the proposed
non-convex and nonsmooth model by using the framework of the coordinate
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Table 3. Comparison for deblurring under the uniform blur

Denoising Noisy TVRV L1L1 NWTV
image PSNR time PSNR time PSNR time PSNR

boat 16.80 0.68 23.50 0.54 23.60 4.15 23.75
cameraman 17.40 0.90 24.51 0.63 24.59 4.25 24.62

goldhill 17.80 0.69 24.55 0.63 24.54 4.29 24.91
lena 17.51 0.67 25.71 0.63 25.73 4.27 25.96

peppers 17.45 0.68 25.50 0.63 25.63 4.17 25.77

(a) Noisy image (b) TVRV

(c) L1L1 (d) NWTV

Figure 3. Restoration of uniform blur

descent method. The convergence analysis guarantees that there exists a con-
vergent subsequence to a stationary point. We further show that the whole
sequence converges to a stationary point when the fidelity term is strongly
convex, for example, denoising problems. The numerical simulations show that
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the NWTV model with IRA performs better than the TVRV model with PID-
Split+ and the convex model (5) with α1 = α2 = 1 in terms of the PSNR
value.
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