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NOTES ON THE MINKOWSKI MEASURE,

THE MINKOWSKI SYMMETRAL,

AND THE BANACH-MAZUR DISTANCE

Xing Huang

Abstract. In this paper we derive some basic inequalities connecting
the Minkowski measure of symmetry, the Minkowski symmetral and the

Banach-Mazur distance. We then explore the geometric contents of these

inequalities and shed light on the structure of the quotient B/Aff of the
space of convex bodies modulo the affine transformations.

1. Preliminaries and statement of results

Initiated by an early work of Minkowski, measures of asymmetry (or sym-
metry) for convex bodies comprise an ever popular subject in convex geometry.
Many kinds of measures of asymmetry, predominantly in maximum-minimum
problems, have been proposed and studied (see [1–3, 7–10] and the references
therein).

Let Rn, n ≥ 2, denote the n-dimensional Euclidean space. Throughout
this paper we will work in an n-dimensional real vector space X which can be
identified with Rn by specifying an orthonormal basis in X . A bounded closed
convex set C ⊂ X is called a convex body if it has non-empty interior: int C 6= ∅.
The space of all convex bodies in X will be denoted by B = BX .

An affine self-map of X is a map ϕ : X → X such that ϕ(X) = A ·X + Z,
where A : X → X is a linear endomorphism of X and Z ∈ X . Note that an
affine map is linear if and only if Z = 0.
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An affine map ϕ is an affine transformation if A is nonsingular, that is, A is
a linear isomorphism, an element of the general linear group GL(X ). The set of
all affine transformations of X is denoted by Aff = Aff(X ). Associating to ϕ ∈
Aff(X ) the pair (A,Z) ∈ GL(X )×X with ϕ(X) = A ·X+Z, A ∈ GL(X ), Z ∈
X , establishes an isomorphism between the affine group Aff and the semidirect
product GL(X ) n T (X ), where T (X ) ∼= X is the group of translations of
X . The natural projection Aff(X )→ GL(X ), ϕ 7→ ϕ0 associating to the affine
transformation ϕ above the linear isomorphism ϕ0 with ϕ0(X) = A·X, X ∈ X ,
will play an important part in the sequel.

The affine group Aff acts naturally on B. Two convex bodies C, C′ ∈ B are
called affine equivalent if they are on the same Aff-orbit, that is, C′ = ϕ(C)
for some ϕ ∈ Aff(X ). Clearly, all simplices are affine equivalent and so are all
ellipsoids.

The present paper is centered around three fundamental concepts of con-
vex geometry: (1) The Minkowski measure of symmetry; (2) The Minkowski
symmetral; and (3) The Banach-Mazur distance. These are defined as follows.

Minkowski Measure of Symmetry: Given C ∈ B, for O ∈ int C and a
hyperplane H with O ∈ H, let H′ and H′′ be the two supporting hyperplanes
of C parallel to H. Let R(H,O) = RC(H,O) be the support ratio, the ratio,
not less than 1, in which H divides the distance between H′ and H′′. Letting

R(O) = RC(O) := sup
H3O

RC(H,O), O ∈ int C,

the Minkowski measure of symmetry of C is defined as

m∗ = m∗C := inf
O∈int C

RC(O).

It is an elementary fact that the infimum is attained. Clearly, m∗ is an affine
invariant function on B, that is, we have

m∗ϕ(C) = m∗C , C ∈ B, ϕ ∈ Aff(X )

(see [1, 10]).
For our purposes, a more concise definition of m∗ is needed as follows:

(1) m∗C = inf{λ > 0 | C +X ⊂ −λ C for some X ∈ X}.

The equivalence of this with the Minkowski measure of symmetry defined by
the support ratio above is a simple calculation (see [8, 9] and also [10, Lemma
3.2.3]). In addition, there are a few other equivalent classical formulations of
m∗ such as the definition based on the chord-ratio, or the definition using affine
functions in the affine dual space (see [1, 2]).

The most important and classical inequality for the Minkowski measure of
symmetry is

1 ≤ m∗C ≤ n, C ∈ B.

Moreover, we have m∗C = 1 if and only if C is centrally symmetric, and m∗C = n
if and only if C is a simplex (see [7]). These show that the Minkowski measure
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of symmetry is a measure of how symmetric or anti-symmetric a convex body
is.
Minkowski Symmetral: For C ∈ B, we define the Minkowski symmetral of
C as C̃ = (C−C)/2. Clearly, C̃ is centrally symmetric with respect to the origin.
The Minkowski symmetral has the following properties:

(MS1) (C + C′)̃ = C̃ + C̃′, C, C′ ∈ B;

(MS2) λ̃C = λC̃, C ∈ B, λ ∈ R;

(MS3) C = C̃ if and only if C is centrally symmetric with respect to the origin;

in particular ˜̃C = C̃;
(MS4) ϕ̃(C) = ϕ0(C̃), where ϕ 7→ ϕ0 is the projection Aff(X )→ GL(X ).

Banach-Mazur Distance: The (extended) Banach-Mazur distance function
dBM : B×B→ R is defined for C, C′ ∈ B as

dBM (C, C′) = inf{λ ≥ 1 | C′ ⊂ ϕ(C) ⊂ λC′ +X with ϕ ∈ Aff(X ) and X ∈ X}.
(By compactness of C and C′, the infimum is clearly attained.)
dBM satisfies the following properties:

(BM1) dBM (C, C′) = 1 for C, C′ ∈ B if and only if C′ = ϕ(C) for some ϕ ∈
Aff(X );

(BM2) dBM (C, C′) = dBM (C′, C) for any C, C′ ∈ B;
(BM3) dBM (C, C′) ≤ dBM (C, C′′) · dBM (C′′, C′) for any C, C′, C′′ ∈ B;
(BM4) dBM (ϕ(C), ψ(C′)) = dBM (C, C′) for any C, C′ ∈ B and ϕ,ψ ∈ Aff(X ).

Clearly, the natural logarithm ln dBM is a pseudo-metric on B. (By (BM1),
affine equivalent convex bodies have zero distance.) But ln dBM is actually a
metric on B/Aff, the quotient of B by the action of the affine group Aff. It is
well-known that, equipped with the Banach-Mazur distance, B/Aff becomes a
compact metric space. (For a recent account on these facts, see [10].)

The following basic inequality is our starting point:

Proposition 1. We have

(2) 1 ≤ max

(
m∗C
m∗C′

,
m∗C′

m∗C

)
≤ dBM (C, C′), C, C′ ∈ B.

The proposition implies

| lnm∗C − lnm∗C′ |≤ ln dBM (C, C′), C, C′ ∈ B.

In other words, with respect to the Banach-Mazur distance ln dBM , the function
lnm∗ is Lipschitz with Lipschitz constant equal to 1.

By simple calculus we have

| x− y |
n

≤| ln(x)− ln(y) |, 1 ≤ x, y ≤ n, ln(z) ≤ z − 1, z > 0.

These yield
| m∗C −m∗C′ |≤ n (dBM (C, C′)− 1), C, C′ ∈ B.

If C′ ∈ B is centrally symmetric then m∗C′ = 1, and (2) gives the following:



698 X. HUANG

Corollary 1. For C ∈ B and centrally symmetric C′ ∈ B, we have

(3) m∗C ≤ dBM (C, C′).

Remark. For C ∈ B and centrally symmetric C′ ∈ B, the upper estimate

dBM (C, C′) ≤ 2n− 1, C ∈ B,

is a classical result due to Lassak [6].

It is well-known that we have

dBM (C, C̃) ≤ m∗C , C ∈ B

(see [8] or [10, Proposition 3.2.2]). This, combined with Corollary 1, gives the
following:

Corollary 2. We have

(4) dBM (C, C̃) = m∗C , C ∈ B.

Remark. The inequality in (2) and its consequences have been stated in [9]
with short proofs. In Section 2 we will give detailed proofs.

Let S ⊂ B be the set of all centrally symmetric convex bodies, and S0 ⊂
S the set of convex bodies that are centrally symmetric with respect to the
origin. Clearly, we have S = T (S0), where T = T (X ) is the translation
group. Actually, for C ∈ S, we have C = C0 + Z with unique C0 ∈ S0 and
Z ∈ X . Associating to C ∈ S the pair (C0, Z) ∈ S0×X gives the identification
S = S0 ×X .

The affine group Aff leaves S invariant, and the general linear group GL(X )
leaves S0 invariant.

Corollaries 1-2 have a nice geometric interpretation as follows: Given C ∈ B,
the (minimal) Banach-Mazur distance (dBM ) of C from S(⊂ B) is realized

by the Minkowski symmetral C̃, and this distance is equal to the Minkowski
measure of symmetry m∗C . Equivalently, we have

(5) dBM (C,S) = inf
C′∈S

dBM (C, C′) = dBM (C, C̃) = m∗C , C ∈ B.

The Minkowski symmetral at which the infimum in (5) is attained is by no
means unique. To elaborate on this, for C ∈ B, we let

SC = {C′ ∈ S | dBM (C, C′) = m∗C}.

Clearly, we have C̃ ∈ SC .

Example. Consider S∆, where ∆ ⊂ R2 is a triangle. Since all triangles are
affinely equivalent, we may assume that ∆ is equilateral. Since m∗∆ = 2, we
have

S∆ = {C ∈ S | ∆ ⊂ ϕ(C) ⊂ 2∆ +X withϕ ∈ Aff(X ) andX ∈ X}.
By performing affine eqivalences in the defining chain of inclusions, we may
assume that X = 0. Thus, a very transparent picture of S∆ emerges; it consists
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of (the affine images of) those centrally symmetric convex bodies C ∈ S for
which we have

∆ ⊂ C ⊂ 2∆.

In particular, the regular hexagon ∆̃ is one of these, and it is inscribed in the
common circumcircle of ∆ and incircle of 2∆̃ = (∆−∆).
For C0, C1 ∈ B, the curve

λ 7→ Cλ = (1− λ)C0 + λC1, λ ∈ [0, 1],

consists of convex bodies, that is, this curve lies entirely in B. The subset
S ⊂ B is “convex” in the sense that, if C0, C1 ∈ S implies Cλ ∈ S for all
λ ∈ [0, 1].

The next proposition asserts convexity of the minimal level-set set SC as
follows:

Proposition 2. For C0, C1 ∈ SC, we have

Cλ = (1− λ)C0 + λC1 ∈ SC , λ ∈ [0, 1].

Due to convexity of S, based on classical analogy, it is natural to expect that
the “distance function” C 7→ dBM (C,S) = m∗C , C ∈ B, is convex:

(6) m∗(1−λ)C0+λC1 ≤ (1− λ)m∗C0 + λm∗C1 , C0, C1 ∈ B, λ ∈ [0, 1].

This, however, fails for a large class of convex bodies. To illustrate this first,
we begin with the following:

Example. Let ∆ ⊂ X be a regular simplex with altitude length equal to n+1,
and B̄ the closed unit ball. Given r > 0, we first observe that the convex body
(1−λ)r∆+λB̄, λ ∈ (0, 1), is the λ-neighborhood of the convex body (1−λ)r∆.
Since the centroid of ∆ splits an altitude line to the ratio n to 1, the Minkowski
measure can be readily computed as

m∗(1−λ)r∆+λB̄ =
(1− λ)rn+ λ

(1− λ)r + λ
.

In particular, we have

lim
r→∞

m∗(1−λ)r∆+λB̄ = n.

On the other hand, since the Minkowski measure is affine invariant, we have

(1− λ)m∗r∆ + λm∗B̄ = (1− λ)n+ λ < n.

We obtain that, for given λ ∈ (0, 1) and r large, (6) cannot hold for C0 = r∆
and C1 = B̄.

The next proposition assests that this phenomenon holds in a much more gen-
eral setting:

Proposition 3. Let C0, C1 ∈ B be convex bodies such that m∗C0 > m∗C1 . Then,
for r > 0 large, the function λ 7→ m∗(1−λ)rC0+λC1 , λ ∈ [0, 1], is not convex.
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Note that a property weaker than convexity is known to hold:

m∗(1−λ)C0+λC1 ≤ max(m∗C0 ,m
∗
C1), C0, C1 ∈ B, λ ∈ [0, 1];

and it is an easy consequence of “super-additivity” (and affine invariance) of
the Minkowski measure

m∗C0+C1 ≤ max(m∗C0 ,m
∗
C1), C0, C1 ∈ B.

(The former follows directly from latter by making affine conbinations; see also
[1].)

Remark. In the opposite end of the spectrum of m∗ one can define the (affine)
measure of asymmetry of C ∈ B as dBM (C,∆), where ∆ is a simplex in X .

Our next result is the following:

Proposition 4. For C, C′ ∈ B, we have

(7) dBM (C̃, C̃′) ≤ dBM (C, C′) ≤ m∗Cm
∗
C′ · dBM (C̃, C̃′).

Remark. The upper bounds for the Banach-Mazur distances in (7) are classical.
We have

dBM (C, C′) ≤ (n− 1) min(mC ,mC′) + n ≤ n2, C, C′ ∈ B,(8)

dBM (C, C′) ≤ n, C, C′ ∈ S.(9)

The first inequality in (8) is due to Qi Guo in [4] (note also that Lassak’s
inequality cited above also follows from this), the second inequality in (8) as
well as (9) are the celebrated results of Fritz John [5].

The Minkowski symmetral defines a map S : B → S0 by S(C) = C̃ =
(C − C)/2, C ∈ B. By the first inequality in (7), S is continuous. Clearly, the
restriction of S to S acts as translations (translating the center of symmetry
to the origin), and the restriction of S to S0 is the identity on S0. Taking
quotients, S gives rise to a retraction1 Σ : B/Aff → S/Aff. For the image we
have S/Aff = S0/GL(X ).

Remark. The quotient S/Aff = S0/GL(X ) is the so-called Banach-Mazur
compactum. It is usually given by calibrating the John’s ellipsoid in each
convex body to the unit ball, and thereby reducing the acting group Aff or
GL(X ) to the orthogonal group O(X ). The topology of the Banach-Mazur
compactum is subtle.

We now claim that S/Aff is a strong deformation retract2 of B/Aff; in
particular, these two spaces are homotopy equivalent. The homotopy for the

1Given a topological space X and a subspace A, a continuous map r : X → A is called a

retraction if the restriction r|A is the identity of A.
2Continuing with the previous footnote, a retraction r : X → A is called a strong defor-

mation retraction if there exists a homotopy F : X× [0, 1]→ X such that F (x, 0) = x, x ∈ X,

F (x, 1) = r(x), x ∈ X, and F (a, t) = a, a ∈ A, t ∈ [0, 1]. We call A a strong deformation
retract of X. It is well-known that in this case the spaces X and A have the same homotopy

type, that is they are homotopy equivalent.
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map S : B→ S0 ⊂ S realizing this is Φ : B× [0, 1]→ B defined by

Φ(C, λ) = (1− λ)C + λC̃, C ∈ B, λ ∈ [0, 1].

We summarize this in the following:

Proposition 5. The Minkowski symmetral gives rise to a continuous defor-
mation retraction Σ : B/Aff → S/Aff, and with this S/Aff is a strong defor-
mation retract of B/Aff.

2. Proofs

Proof of Proposition 1. Let δ ≥ 0 and C, C′ ∈ B such that dBM (C, C′) ≤ 1 + δ.
By the definition of the Banach-Mazur distance

(10) C′ ⊂ ϕ(C) ⊂ (1 + δ)C′ + Y

for some ϕ ∈ Aff(X ) and Y ∈ X . Since m∗ and dBM are affine invariant,
without loss of generality, we may assume that ϕ is the identity.

Let λ > 0 such that m∗C ≤ λ. Then (1) gives

(11) C +X ⊂ −λC

for some X ∈ X . Combining (10) and (11), we obtain

C′ +X + λY ⊂ C +X + λY ⊂ −λ(C − Y ) ⊂ −λ(1 + δ)C′.

Now, applying (1) to C′ we obtain m∗C′ ≤ λ(1 + δ). Thus, we get

(12) m∗C′ ≤ m∗C · dBM (C, C′).

The same inequality holds with the roles of C, C′ in (12) interchanged. These
together give (2). �

Proof of Proposition 2. Given C ∈ B and C0, C1 ∈ SC we let Cλ = (1− λ)C0 +
λC1, λ ∈ [0, 1]. Clearly, Cλ ∈ S, λ ∈ [0, 1]. Since

dBM (C, C0) = dBM (C, C1) = m∗C ,

we have

C0 ⊂ ϕ0(C) ⊂ m∗C C0 +X0

C1 ⊂ ϕ1(C) ⊂ m∗C C1 +X1

for some ϕ0, ϕ1 ∈ Aff and X0, X1 ∈ X . Combining these, we obtain

(1− λ)C0 + λC1 ⊂ (1− λ)ϕ0(C) + λϕ1(C)
⊂ m∗C ((1− λ)C0 + λC1) + (1− λ)X0 + λX1.

We write this as

(13) Cλ ⊂ ϕλ(C) ⊂ m∗C Cλ +Xλ,

where ϕλ = (1 − λ)ϕ0 + λϕ1 and Xλ = (1 − λ)X0 + λX1 ∈ X . Clearly,
ϕλ : X → X is an affine map. In addition, it must be nonsingular since, by
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(13), the image of ϕλ contains Cλ and the latter has nonempty interior. Thus
ϕλ ∈ Aff, an affine transformation.

By (13) and the definition of the Banach-Mazur distance, we have

dBM (C, Cλ) ≤ m∗C .

By (5), m∗C is the minimal distance, therefore equality holds here. Hence,
Cλ ∈ SC , λ ∈ [0, 1], and the proposition follows. �

Proof of Proposition 3. Let λ ∈ (0, 1) be fixed and r > 0. Since the Minkowski
measure is affine invariant, we have

lim
r→∞

m∗(1−λ)rC0+λC1 = lim
r→∞

m∗(1−λ)C0+λ(1/r)C1 = m∗(1−λ)C0 = m∗C0 .

On the other hand, we have

(1− λ)m∗C0 + λm∗C1 = m∗C0 + λ(m∗C1 −m∗C0) < m∗C0

since, by assumption, m∗C0 > m∗C1 . Comparing these two, we see that, for large
r > 0, the function λ 7→ m∗(1−λ)rC0+λC1 cannot be convex. The proposition

follows. �

Proof of Proposition 4. We need a simple lemma as follows:

Lemma. Let A,A′,B,B′ ∈ X . If A ⊂ A′,B ⊂ B′, then
A− B ⊂ A′ − B′;

in particular, if C, C′ ∈ B and C ⊂ C′, then C̃ ⊂ C̃′.

Proof. Let A − B ∈ A − B, where A ∈ A, B ∈ B, then A ∈ A′, B ∈ B′, which
implies A−B ∈ A′ − B′. The lemma follows. �

Returning to the proof of Proposition 4, assume dBM (C, C′) ≤ λ for some λ ≥ 1.
By definition, we have

C ⊂ ϕ(C′) ⊂ λ C +X

for some ϕ ∈ Aff and X ∈ X . By the lemma above, we obtain

1

2
(C − C) ⊂ 1

2
(ϕ(C′)− ϕ(C′)) ⊂ 1

2
((λC +X)− (λC +X)).

We simplify and write this as

(14) C̃ ⊂ 1

2
(ϕ(C′)− ϕ(C′)) ⊂ λ

2
(C − C) = λC̃.

A typical element in the middle term in (14) is (ϕ(X ′)−ϕ(Y ′))/2, X ′, Y ′ ∈ C′.
Letting ϕ(X) = A ·X + Z,Z ∈ X , A ∈ GL(X ), we write this as

(15)
1

2
(ϕ(X ′)− ϕ(Y ′)) =

1

2
(A ·X ′ + Z − (A · Y ′ + Z)) = A · 1

2
(X ′ − Y ′).

This is a typical element in ϕ0(C̃′) = A · C̃′, where ϕ0 ∈ GL(X ) is the projection
of Aff. Putting these together, (14) becomes

C̃ ⊂ ϕ0(C̃′) ⊂ λC̃.
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This gives

dBM (C̃, C̃′) ≤ λ.
Since dBM (C, C′) ≤ λ, we obtain the first inequality in (7).

The second inequality in (7) is an easy application of (BM3) along with
Corollary 2 as follows:

dBM (C, C′) ≤ dBM (C, C̃)dBM (C′, C̃′)dBM (C̃, C̃′) = m∗Cm
∗
C′ · dBM (C̃, C̃′). �

Remark. The first inequality in (7) is sharp, e.g. if C and C′ are symmetric,

then equality holds. Note that, for C not symmetric and C′ = C̃, then, by the
classical Minkowski estimate, we have

1 = dBM (C̃, C̃′) < dBM (C, C′) = dBM (C, C̃) = m∗C .

Proof of Proposition 5. We first claim that the homotopy Φ : B × [0, 1] → B,

Φ(C, λ) = (1 − λ)C + λC̃, C ∈ B, λ ∈ [0, 1], defined before the statement of
Proposition 5 factors through the projection B → B/Aff and gives rise to a
homotopy B/Aff × [0, 1] → B/Aff. Let λ ∈ [0, 1] be fixed. For C ∈ B and
ϕ ∈ Aff, using (MS4), we calculate

Φ(ϕ(C), λ) = (1− λ)ϕ(C) + λϕ̃(C)

= (1− λ)ϕ(C) + λϕ0(C̃)

= (1− λ)A · C + (1− λ)Z + λA · C̃

= A ·
(

(1− λ) C + λ C̃
)

+ (1− λ)Z

= A · Φ(C, λ) + (1− λ)Z,

where, as usual, ϕ(X) = A ·X + Z, A ∈ GL(X ), Z ∈ X .
The last convex body in the computation above is affinely equivalent to the

convex body Φ(C, λ), so that the projection of the homotopy is well-defined.
The claim follows.

The rest of the proof of Proposition 5 is straightforward. We have Φ(C, 0) =

C and Φ(C, 1) = C̃, C ∈ B. Finally, for C′ ∈ S and λ ∈ [0, 1], we have

Φ(C′, λ) = (1− λ)C′ + λC̃′ = (1− λ)C′ + λC′ = C′.

The proposition follows. �
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