References
- Churg J, Habib R, White RH. Pathology of the nephrotic syndrome in children: a report for the International Study of Kidney Disease in Children. Lancet 1970;760:1299-30.
- Haas M, Meehan SM, Karrison TG, Spargo BH. Changing etiologies of unexplained adult nephrotic syndrome: a comparison of renal biopsy findings from 1976-1979 and 1995-1997. Am J Kidney Dis 1997;30:621. https://doi.org/10.1016/S0272-6386(97)90485-6
- Trompeter RS, Lloyd BW, Hicks J, White RH, Cameron JS. Longterm outcome for children with minimal-change nephrotic syndrome. Lancet 1985;1:368-70.
- A report of the International Study of Kidney Disease in Children. The primary nephrotic syndrome in children. Identification of patients with minimal change nephrotic syndrome from initial response to prednisone. J Pediatr 1981;98:561-4. https://doi.org/10.1016/S0022-3476(81)80760-3
- Teeninga N, Kist-van Holthe JE, van Rijswijk N, de Mos NI, Hop WC, Wetzels JF, et al. Extending prednisolone treatment does not reduce relapses in childhood nephrotic syndrome. J Am Soc Nephrol 2013; 24:149-59. https://doi.org/10.1681/ASN.2012070646
- Tarshish P, Tobin JN, Bernstein J, Edelmann CM Jr. Prognostic significance of the early course of minimal change nephrotic syndrome: Report of the International Study of Kidney Disease in Children. J Am Soc Nephrol 1997;8:769-76.
- Gipson DS, Chin H, Presler TP, Jennette C, Ferris ME, Massengill S, et al. Differential risk of remission and ESRD in childhood FSGS. Pediatr Nephrol 2006;21:344-9. https://doi.org/10.1007/s00467-005-2097-0
- D'Agati VD. Pathologic classification of focal segmental glomerulosclerosis. Semin Nephrol 2003;23:117-34. https://doi.org/10.1053/snep.2003.50012
- Schnaper HW. Idiopathic focal segmental glomerulosclerosis. Semin Nephrol 2003;23:183-93. https://doi.org/10.1053/snep.2003.50016
- Pavenstadt H, Kriz W, Kretzler M. Cell biology of the glomerular podocyte. Physiol Rev 2002;83:253-307.
- Asanuma K, Mundel P. The role of podocytes in glomerular pathobiology. Clin Exp Nephrol 2003;7:255-9. https://doi.org/10.1007/s10157-003-0259-6
- McKenzie AN, Culpepper JA, de Waal Malefyt R, Briere F, Punnonen J, Aversa G, et al. Interleukin 13, a T-cell-derived cytokine that regulates human monocyte and B-cell function. Proc Natl Acad Sci USA 1993; 90:3735-40. https://doi.org/10.1073/pnas.90.8.3735
- Cheung W, Wei CL, Seah CC, Jordan SC, Yap HK. Atopy, serum IgE, and interleukin-13 in steroid-responsive nephrotic syndrome. Pediatr Nephrol 2004;19:627-32. https://doi.org/10.1007/s00467-004-1438-8
- Park SJ, Saleem MA, Nam JA, Ha TS, Shin JI. Effects of interleukin-13 and montelukast on the expression of zonula occludens-1 in human podocytes. Yonsei Med J 2015;56:426-32. https://doi.org/10.3349/ymj.2015.56.2.426
- Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 1995;146:3-15.
- Gavrieli Y, Sherman Y, Ben-Sasson SA. Identification of pro-grammed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 1992;119:493-501. https://doi.org/10.1083/jcb.119.3.493
- Lai KW, Wei CL, Tan LK, Tan PH, Chiang GS, Lee CG, et al. Overexpression of interleukin-13 induces minimal-change-like nephropathy in rats. J Am Soc Nephrol 2007;18:1476-85. https://doi.org/10.1681/ASN.2006070710
- Ha TS, Nam JA, Seong SB, Saleem MA, Park SJ, Shin JI. Montelukast improves the changes of cytoskeletal and adaptor proteins of human podocytes by interleukin-13. Inflamm Res 2017;66:793-802. https://doi.org/10.1007/s00011-017-1058-y
- Yap HK, Cheung W, Murugasu B, Sim SK, Seah CC, Jordan SC. Th1 and Th2 cytokine mRNA profiles in childhood nephrotic syndrome: evidence for increased IL-13 mRNA expression in relapse. J Am Soc Nephrol 1999;10:529-37.
- Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev 2007;87:99-163. https://doi.org/10.1152/physrev.00013.2006
- Ryu M, Mulay SR, Miosge N, Gross O, Anders HJ. Tumour necrosis factor-alpha drives Alport glomerulosclerosis in mice by promoting podocyte apoptosis. J Pathol 2011;226:120-31.
- Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 2012;19:107-20. https://doi.org/10.1038/cdd.2011.96
- Faleiro L, Kobayashi R, Fearnhead H, Lazebnik Y. Multiple species of CPP32 and Mch2 are the major active caspases present inapoptotic cells. EMBO J 1997;16:2271-81. https://doi.org/10.1093/emboj/16.9.2271
- Polverino AJ and Patterson SD. Selective activation of caspases during apoptotic induction in HL-60 cells. J Biol Chem 1997;272: 7013-21. https://doi.org/10.1074/jbc.272.11.7013
- Zou H, Henzel WJ, Liu X, Lutschg A, Wang X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 1997;90:405-13. https://doi.org/10.1016/S0092-8674(00)80501-2
- Manna SK, Aggarwal BB. IL-13 suppresses TNF-induced activation of nuclear factor-kappa B, activation protein-1, and apoptosis. J Immunol 1998;161:2863-72.
- Kawakami M, Kawakami K, Puri RK. Apoptotic pathways of cell death induced by an interleukin-13 receptor-targeted recombinant cytotoxin in head and neck cancer cells. Cancer Immunol Immunother 2002;50:691-700. https://doi.org/10.1007/s00262-001-0242-6
- Kawakami M, Kawakami K, Puri RK. Tumor regression mechanisms by IL-13 receptor-targeted cancer therapy involve apoptotic pathways. Int J Cancer 2003;103:45-52. https://doi.org/10.1002/ijc.10778
- Borowski A, Kuepper M, Horn U, Knupfer U, Zissel G, Hohne K, et al. Interleukin-13 acts as an apoptotic effector on lung epithelial cells and induces pro-fibrotic gene expression in lung fibroblasts. Clin Exp Allergy 2008;38:619-28. https://doi.org/10.1111/j.1365-2222.2008.02944.x
- Heller F, Fromm A, Gitter AH, Mankertz J, Schulzke JD. Epithelial apoptosis is a prominent feature of the epithelial barrier disturbance in intestinal inflammation: effect of pro-inflammatory interleukin-13 on epithelial cell function. Mucosal Immunol 2008;1 Suppl 1:S58-61.
- Friedrich K, Brandlein S, Ehrhardt I, Krause S, Luttmann W. Interleukin- 4 and Interleukin-13 receptors trigger distinct JAK/STAT activation patterns in mouse lymphocytes. Signal Transduction 2003;3:26-32. https://doi.org/10.1002/sita.200300023
Cited by
- Circulating Permeability Factors in Idiopathic Nephrotic Syndrome vol.23, pp.1, 2019, https://doi.org/10.3339/jkspn.2019.23.1.7